بررسی تأثیر هواپیماهای سنگین بر روی ترک‌های انعکاسی ‌روسازی مرکب فرودگاه‌ها با استفاده از روش المان محدود تعمیم یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی عمران، دانشگاه زنجان

2 دانش‌آموخته کارشناسی ارشد، گروه مهندسی عمران، دانشگاه زنجان

چکیده

در این تحقیق، تاثیر مشخصات بارهای دو نوع از هواپیماهای سنگین مسافری بر روی پتانسیل رشد ترک انعکاسی در روسازی مرکب فرودگاه­ها مورد مطالعه قرار گرفته است. دو نوع هواپیما شامل بوئینگ 747 و ایرباس A380، که از سنگین ترین هواپیماهای مسافربری موجود هستند مورد استفاده قرار گرفته­اند. محورهای این هواپیماها در موقعیت­های مختلفی از محل درز طولی و ترک موچود در لایه آسفالتی قرار گرفته­اند و ضرایب شدت تنش­ها و کرنش کششی در نوک ترک موجود در لایه آسفالتی محاسبه شده و مورد تحلیل و مقایسه قرار گرفته­اند. تحلیل­ها با مدلسازی المان محدود سه­بعدی تعمیم­یافته در نرم افزار آباکوس انجام گرفته­اند. لایه آسفالتی به صورت ویسکوالاستیک خطی در نظر گرفته شده و سایر لایه ها و بستر الاستیک خطی در نظر گرفته شده­اند. نتایج نشان می­دهند که مقدار ضریب شدت تنش بحرانی مود 1 هواپیمای بوئینگ از هواپیمای ایرباس بزرگتر است و مقادیر ضریب شدت تنش بحرانی مود 2 و 3 هواپیمای ایرباس از هواپیمای بوئینگ بزرگتر هستند. همچنین نتایج بیانگر این است که با حرکت محورها در راستای طولی ترک مقدار کرنش کششی بحرانی روند کاهشی داشته و مقدار آن نسبت به بارگذاری در مرکز به ترتیب در هواپیمای ایرباس تا87/42 درصد و در هواپیمای بوئینگ تا 89/23 درصد کاهش می­یابد. با حرکت محور­ها در راستای عرضی ترک مقدار کرنش کششی بحرانی روند افزایشی داشته که به ترتیب در هواپیما ایرباس تا 73/26 درصد و در هواپیمای بوئینگ تا 93/17 درصد افزایش می­یابد. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Heavy Airplanes on the Reflective Cracking of Airport Composite Pavements Using Extended Finite Elements Method (XFEM)

نویسندگان [English]

  • H. Taherkhani 1
  • H. Saffari 2
1 Associate Professor, Civil Engineering Department, University of Zanjan, Zanjan
2 Graduated, Highway and Transportation Engineering, University of Zanjan
چکیده [English]

In this study, the effects of two typical commercial heavy airplanes, namely airbus AA380-800 and Boeing B747-400ER, on the potential of reflective crack propagation in composite pavement have been investigated. The axles of the airplanes were positioned at different longitudinal and transverse distances from the center of crack and the stress intensity factors, and tensile strain at the tip of crack in asphaltic layer were determined and compared. Modeling and analysis were performed using extended 3D finite elements method. The asphaltic layer was assumed to behave as a viscoelastic material and the underlying layers were assumed to be linear elastic. Results show that higher maximum stress intensity factor in mode 1 is generated under Boeing airplane loading than airbus, and those in mode 2 and 3, are higher for airbus than Boeing. Results also reveal that by moving the center of axles along the longitudinal joint, the maximum tensile strain at the tip of crack decreases, such that 42.87% reduction for airbus and 23.89% reduction for Boeing airplane is obtained, in comparison to the loading at the center. By moving the center of axles in transverse direction, the maximum tensile strain at the tip of crack increases by 26.73 and 17.93%, in comparison with the load at the center for airbus and Boeing airplane, respectively.

کلیدواژه‌ها [English]

  • Composite Pavement
  • Airport
  • Finite Elements Method
  • Reflective Cracking
  • Stress Intensity Factor
-اخوان بهابادی، م.ج.، خبیری، م.م. و فتوحی فیروزآبادی، ع. (1395)، "بررسی عددی رشد ترک بر پایه ضرایب شدت تنش در اثر بارگذاری چرخ هواپیما در روسازی آسفالتی فرودگاه"، مجله پژوهشنامه حمل ونقل، شماره 3، ص. 14-30.
 
-ABAQUS version 6.13, user's Guide, (2013).
 
-Baek, J. and Al-Qadi, I., (2011), "Sand Mix Interlayer to Control Reflective Cracking in Hot-Mix Asphalt Overlay", Journal of the Transportation Research Board, No. 2227,
pp. 53-60.
-Baek, J., Ozer, H., Wang, H. and Al-Qadi, I., (2010), "Effects of Interface Conditions on Reflective Cracking Development in Hot-Mix Asphalt Overlays", Road Materials and Pavement Design, Taylor & Francis, No. 2,
pp. 307-334.
 
-Belytschko, T. and Black, T., (1999), "Elastic crack growth in finite elements with minimal remeshing", Journal of Methods Engineering, No. 45(5), pp. 601-620.
 
-Dave, E. and Buttlar, W. G., (2010), "Thermal reflective cracking of asphalt concrete overlays", Journal of Pavement Engineering, Taylor & Francis, No. 6, pp. 477-488.
 
-Elseifi, M. and Al-Qadi, I., (2004), "A Simplified Overlay Design Model against Reflective Cracking Utilizing Service Life Prediction", Road Materials and Pavement Design, Taylor & Francis, No. 2, pp. 169-191.
 
-Flintsch, G. W., Diefenderfer, B. K. and Nunez, O., (2008), "Composite Pavement Systems: Synthesis of Design and Construction Practices", Virginia Department of Transportation & Federal Highway Administration, Charlottesville, Virginia.
 
-Garzon, J., Duarte, C. A. and Buttlar, W. G., (2010), "Analysis of Reflective Cracks in Airfield Pavements using a 3-D Generalized Finite Element Method", Road Materials and Pavement Design, Taylor & Francis, No. 2,
pp. 459-477.
 
-Garzon, J., Kim, D. J., Duarte, C. A. and Buttlar, W. G., (2013) "Two-Scale 3D Analysis of Reflective Cracks In Airfield Pavements", Journal of Computational Methods, No. 6, pp. 1-30.
 
-Ghauch, Z.G. and Abou-Jaoude, G. G., (2013),  "Strain response of hot-mix asphalt overlays in jointed plain concrete pavements due to reflective cracking", Elsevier Ltd,
No. 124, pp. 38-46.
 
-Huang, Y. H., (2004), "Pavement analysis and design", 2­­nd Upper Saddle River: NJ Prentice Hall.
 
-Islam, M. R., Vallejo, M. J. and Tarefder, R.A., (2017), "Crack Propagation in Hot Mix Asphalt Overlay Using Extended Finite-Element Model", Journal of materials in civil engineering, ASCE, No. 29, pp. 1-13.
 
-Kim, H., Buttlar, W. G. and Chou, K. F., (2010), "Mesh-Independent Fracture Modeling for Overlay Pavement System under Heavy -Aircraft Gear Loadings", Journal of transportation engineering, ASCE, No. 136, pp. 370-378.
 
-Kim, H. and Buttlar, W. G., (2009) "Finite element cohesive fracture modeling of airport pavements at low temperatures", Cold Regions Science and Technology, Elsevier Ltd, No. 57, pp. 123-130.
 
-Kim, J. and Buttlar, W. G., (2002), "Finite element cohesive fracture modeling of airport pavements at low temperatures", Journal of transportation engineering, ASCE, No. 128, pp. 375-384.
 
-Liao, Y., (2007), "Viscoelastic FE modeling of asphalt pavements and its application to U.S", 30 perpetual pavements (doctoral dissertation). Ohio University, USA.
 
-Modarres, A. and Shabani, H., (2015), "Investigating the effect of aircraft impact loading on the longitudinal top-down crack propagation parameters in asphalt runway pavement using fracture mechanics", Elsevier Ltd, No. 150, pp. 28-46.
 
-Ogundipe, O. M., Thom, N. and Collop, A., (2014), "Finite element analysis of overlay incorporating stress absorbing membrane interlayers against reflective cracking", Springer, No. 22, pp. 104-111.
 
-Ogundipe, O. M., Thom, N. and Collop, A., (2012), "Investigation of crack resistance potential of stress absorbing membrane interlayers (SAMIs) under traffic loading", Elsevier Ltd, No. 38, pp. 658-666.
 
-Shen, S., Zhang, W., Wang, H. and Huang, H., (2017), "Numerical evaluation of surface-initiated cracking in flexible pavement overlays with field observations", Road Materials and Pavement Design, Taylor & Francis, No. 1, pp. 221-234.