مدل‌سازی عدد جریان مخلوط‌های آسفالتی با استفاده از روش رگرسیون چند‌جمله‌ای تکاملی 2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی عمران، دانشگاه صنعتی سیرجان، سیرجان، ایران

2 دانش آموخته کارشناسی ارشد، آزمایشگاه پیشرفته قیر و آسفالت، دانشگاه صنعتی سیرجان، سیرجان، ایران

3 مربی، دانشکده مهندسی عمران، دانشگاه صنعتی سیرجان، سیرجان، ایران

10.22034/tri.2021.108196

چکیده

خرابی شیار شدگی یکی از خرابی‌های مهم در روسازی‌های آسفالتی است که در آب‌وهوای گرم به‌شدت تحت تأثیر مشخصات مخلوط آسفالتی قرار دارد. روش‌های مختلفی برای تعیین مقاومت مخلوط‌های آسفالتی در برابر شیار شدگی (تغییر شکل دائمی) وجود دارد که یکی از این روش‌ها، تعیین عدد جریان مخلوط آسفالتی با استفاده از آزمایش خزش دینامیکی است. تعیین عدد جریان مخلوط‌های آسفالتی نیازمند تجهیزات دینامیکی پیشرفته و همچنین صرف هزینه و زمان قابل‌توجه است. در این مقاله از روش رگرسیون چندجمله‌ای تکاملی (EPR) به‌منظور ارائه مدلی جهت پیش‌بینی عدد جریان مخلوط‌های آسفالتی بر اساس مشخصات طرح اختلاط مارشال، استفاده‌شده است. با بهره‌گیری از مدل توسعه داده‌شده می‌توان عدد جریان مخلوط‌های آسفالتی را با داشتن پارامترهای طرح اختلاط مارشال شامل درصد مصالح درشت‌دانه، درصد مصالح ریزدانه، درصد فیلر، درصد قیر، درصد فضای خالی مخلوط آسفالتی، درصد فضای خالی مصالح سنگی، استقامت مارشال و نرمی پیش‌بینی نمود. مدل توسعه داده‌شده دارای ضریب تعیین (R2) برابر با 9714/0 برای داده‌های آموزش و 9661/0 برای داده‌های آزمون است که نشان‌دهنده دقت بالای مدل توسعه داده‌شده است. بررسی انجام‌شده نشان می‌دهد که دقت مدل توسعه در مقایسه با مدل‌های توسعه داده‌شده توسط سایر محققین بیشتر است. به علاوه تحلیل حساسیت نشان دهنده انتطباق مناسب مدل توسعه داده شده با رفتار فیزیکی مخلوط‌های آسفالتی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling of Flow Number of Asphalt Mixtures Using Evolutionary polynomial Regression (EPR) Method

نویسندگان [English]

  • Ali Reza Ghanizadeh 1
  • Nasrin Heidarabadizadeh 2
  • Arash Ziaie 3
1 Associate Professor, Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran.
2 M.Sc., Grad., Advanced Laboratory on Bitumen and Asphalt Mixes, Sirjan University of Technology, Sirjan, Iran.
3 Instructor, Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran.
چکیده [English]

Rutting is among the most important distresses in flexible pavements, which is mainly influenced by asphalt mixes properties at high temperatures. There are different methods for measuring the rutting resistance of asphalt mixes. Flow number of asphalt mix, which is measured experimentally by dynamic creep test is one of the most commonly used rutting index, which requires advanced devices, notable cost and time. This paper aims to develop a simple model for predicting the flow number of asphalt mixes using Evolutionary polynomial Regression (EPR). The developed model can be used for predicting flow number based on Marshall mix design parameters including percentage of fine and coarse aggregates, bitumen content, filler content, air void content, void in mineral aggregate, Marshall stability, and flow. The coefficient of determination (R2) of model in case of training and testing set is 0.9714, and 0.969, respectively, which confirms the high accuracy of model. Comparison of the developed model with the existing models shows the superior performance of the developed model. In addition, the parametric analysis indicates the proper conformity of the developed model with the physical behavior of the asphalt mixtures.

کلیدواژه‌ها [English]

  • Flow number
  • Rutting potential
  • Marshall mixing design parameters
  • Evolutionary polynomial Regression (EPR) Method
-Abdul Ghani, N., Shahin, M., & Nikraz, H. (2012), “Use of evolutionary polynomial regression (EPR) for prediction of total sediment load of Malaysian rivers”. International Journal of Engineering, 6(5), pp.262-277.
-Alavi, A.H., Ameri, M., Gandomi, A.H., & Mirzahosseini, M.R. (2011), “Formulation of flow number of asphalt mixes using a hybrid computational method”, Construction Building Materials, 25(3), pp.1338-1355.
-Bahuguna, S., (2004), “Permanent deformation and rate effects in asphalt concrete: Constitutive modeling and numerical implementation”, Ph.D. thesis, Montana State University.
-Balf, M. R., Noori, R., Berndtsson, R., Ghaemi, A., & Ghiasi, B., (2018), “Evolutionary polynomial regression approach to predict longitudinal dispersion coefficient in rivers”. Journal of Water Supply: Research and Technology-Aqua, 67(5), pp.447-457.
-Berardi L., Giustolisi O., Kapelan Z. & Savic, D.A., (2008), “Development of pipe deterioration models for water distribution systems using EPR.” Journal of Hydro Informatics, 10(2), pp.113-126.
-Bruno, D. E., Barca, E., Goncalves, R. M., de Araujo Queiroz, H. A., Berardi, L., & Passarella, G., (2018), “Linear and evolutionary polynomial regression models to forecast coastal dynamics: Comparison and reliability assessment”. Geomorphology, 300, pp.128-140.
-Cooper, K. E., Brown, S., & Pooley, G., (1985), “The design of aggregate gradings for asphalt basecourses”. Paper presented at the Association of Asphalt Paving Technologists Proc.
-FHWA, (1998), DTFH 61-94-R-00045: “Interim task C report of preliminary recommendations for the simple performance test”.
-Gandomi, A.H., Alavi, A.H., Mirzahosseini, M.R., & Nejad, F.M., (2010), “Nonlinear genetic-based models for prediction of flow number of asphalt mixtures”. Journal of Materials in Civil Engineering, 23(3), pp.248-263.
-Ghorbani, A., & Hasanzadehshooiili, H., (2018), “Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing”. Soils and foundations, 58(1), pp.34-49.
-Giustolisi O., Doglioni A., Savic D.A. & Pierro F., (2008), “An evolutionary multi objective strategy for the effective management of groundwater resources.” Water Resources Research Journal, 44(W01403), pp.1-14.
Giustolisi, O., & Savic D.A. (2006), “A symbolic data driven technique based on Evolutionary Polynomial Regression.” Journal of Hydroinformatics, 8(3), pp.207-222.
-Goldberg D.E. (1989), “Genetic algorithms in search, optimization and machine learning”, Massachussets: Addison Wesley.
-Kaloush, K.E., (2001), “Sample performance test for permanent deformation of asphalt mixture”. Ph.D. thesis, Arizona State University, Tempe, AZ.
-Kaloush, K.E., Witczak, M., Roque, R., Brown, S., D'Angelo, J., Marasteanu, M., & Masad, E. (2002), “Tertiary flow characteristics of asphalt mixtures”. Paper presented at the Asphalt Paving Technology 2002.
-Kim, Y. R., (2008), “Modeling of asphalt concrete”.
-Koza J.R., (1992), “Genetic programming: on the programming of computers by means of natural.
-Laucelli, D., Berardi, L., Doglioni, A., & Giustolisi, O. (2012), “EPR-MOGA-XL: an Excel based paradigm to enhance transfer of research achievements on data-driven modeling”.
-Lavin, P., (2014), “Asphalt pavements: a practical guide to design, production and maintenance for engineers and architects”, CRC Press.
-Mansourian, A., Ghanizadeh, A. R., & Golchin, B., (2019), Modeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks. Journal of Rehabilitation in Civil Engineering, 7(1),
pp.74-92.
-Marques, A., & Correia, P. L., (2012), “Automatic road pavement crack detection using SVM”. Lisbon, Portugal: Dissertation for the Master of Science Degree in Electrical and Computer Engineering at Instituto Superior Técnico.
-Mirzahosseini, M.R., Aghaeifar, A., Alavi, A. H., Gandomi, A.H., & Seyednour, R., (2011), “Permanent deformation analysis of asphalt mixtures using soft computing techniques”, Expert Systems with Applications, 38(5), pp.6081-6100.
Özgan, E., Korkmaz, I., & Emiroğlu, M., (2012), “Adaptive neuro-fuzzy inference approach for prediction the stiffness modulus on asphalt concrete”, Advances in Engineering Software, 45(1), pp.100-104.
Pardhan, M., (1995), “Permanent deformation characteristics of asphalt-aggregate mixture using varied material and modeling procedure with Marshall method”, Ph.D. thesis, Montana State University, Bozeman, MT.
Saltan, M., & Terzi, S. (2005), “Comparative analysis of using artificial neural networks (ANN) and gene expression programming (GEP) in back calculation of pavement layer thickness”, 12, pp.42-50.
Savic D.A., Giutolisi O., Berardi L., Shepherd W., Djordjevic S. & Saul A., (2006), “Modelling sewer failure by evolutionary computing.” Proceeding of the Institution of Civil Engineers, Water Management, 159(2), pp.111-118.
Selection”, MIT Press, Massachusetts.
-Sollazzo, G., Fwa, T., & Bosurgi, G., (2017), “An ANN model to correlate roughness and structural performance in asphalt pavements”. Construction and Building Materials, 134, pp.684-693.
-Sousa, J.B., Craus, J., & Monismith, C.L., (1991), “Summary report on permanent defomation in asphalt concrete”,
(No. SHRP-A-318).
-Terzi, S. (2007). “Modeling the pavement serviceability ratio of flexible highway pavements by artificial neural networks”. Construction and Building Materials, 21(3), 590-593.
-Watson A., Parmee I. (1996). “System identification using genetic programming”, Proceedings of ACEDC’96, University of Plymouth, United Kingdom.
-Williams, R.C., Robinette, C.J., Bausano, J., & Breakah, T., (2007), “Testing of wisconsin asphalt mixtures for the forthcoming aashto mechanistic-empirical pavement design procedure”: Final Report. Wisconsin Highway Research Program.
-Witczak, M. W., (2002), “Simple performance test for superpave mix design”, Transportation Research Board, 465.
-Wu, Z., Hu, S., & Zhou, F., (2014), “Prediction of stress intensity factors in pavement cracking with neural networks based on semi-analytical FEA”, Expert Systems with Applications, 41(4), pp.1021-1030.
-Yan, K.z., Ge, D.D., & Zhang, Z., (2014), “Support vector machine models for prediction of flow number of asphalt mixtures”, International Journal of Pavement Research Technology, 7(1), pp.31-39.
-Yin, Z.-Y., Jin, Y.-F., Huang, H.-W., & Shen, S., L., (2016), “Evolutionary polynomial regression based modelling of clay compressibility using an enhanced hybrid real-coded genetic algorithm”. Engineering geology, 210, pp.158-167.
-Zhou, F., Scullion, T., & Sun, L., (2004), “Verification and modeling of three-stage permanent deformation behavior of asphalt mixes”, Journal of Transportation Engineering, Part B: Pavements, 130(4), pp.486-494.
-Ziari, H., Amini, A., Goli, A., & Mirzaiyan, D. (2018), “Predicting rutting performance of carbon nano tube (CNT) asphalt binders using regression models and neural networks”, Construction and Building Materials, 160, pp.415-426.