تأثیر افزودن پوزولان های مختلف بر خصوصیات مکانیکی و جذب آب روسازی بتنی متخلخل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پسادکتری، دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران

2 استاد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

3 مربی، دانشکده مهندسی عمران، دانشگاه گرمسار، گرمسار، ایران

چکیده

در این مقاله به بررسی عملکرد بتن متخلخل روسازی حاوی انواع پوزولان ها در سنین 7 و 28 روزه پرداخته شد. بدین منظور تعدادی نمونه ی استوانه ای به ابعاد 10*20 سانتی‌متر و مکعبی به بعد 10 سانتی‌متر جهت انجام آزمایشات مقاومت فشاری و کششی و آزمایش جذب آب (دوام) ساخته شد. پوزولان های بکار رفته شامل میکروسیلیس، زئولیت، خاکستربادی و سرباره کوره آهن‌گدازی بوده که بعنوان جایگزین بخشی از سیمان در مقادیر 10 و 20 درصد استفاده شدند. لازم به ذکر است شن ریزدانه ی بکار رفته در این مقاله از معدن هامش‌بر استان سمنان بعنوان مصالح بومی بکار گرفته شد. نتایج حاکی از آن است که استفاده از میکروسیلیس و سرباره کوره آهن گدازی در بتن متخلخل بیشترین تأثیر را در بهبود مقاومت فشاری و کششی داشته بطوری که بطور میانگین مقاومت فشاری 60 درصد و مقاومت کششی تا حدود 3 برابر نسبت به نمونه شاهد بهبود بخشیده شد. همچنین در آزمایش جذب آب، در تمامی نمونه ها بجز نمونه های حاوی میکروسیلیس، با افزودن پوزولان های مختلف درصد جذب آب کاهش یافته، بطوری که طبق آیین‌نامه CEB-FIP در رده متوسط و خوب قرار گرفتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of adding different pozzolans on mechanical properties and water absorption of Pervious Concrete Pavement

نویسندگان [English]

  • Ghasem Pachideh 1
  • Majid Gholhaki 2
  • Amin Moshatgh 3
1 Postdoctoral Research Assistant, Department of Civil Engineering, Sharif University of Technology, Tehran,Iran.
2 Professor, Department of Civil Engineering, University of Semnan, Semnan, Iran.
3 M.Sc., Grad., Department of Civil Engineering, University of Garmsar, Garmsar, Iran.
چکیده [English]

Pervious concrete is a special type of concrete comprised of cement, water, coarse aggregate, little or no sand which is sometimes mixed with the additives. The uniformly graded coarse aggregates in combination with low water content (i.e., water-to-cement ratios ranging from 0.25 to 0.35) were used to produce a concrete mixture whose pore content ranges from 11% to 35%. In this paper, performance of pervious concrete containing silica fume, zeolite, fly ash and granulated blast furnace slag (10% and 20% of cement weight) was investigated at the ages of 7 and 28 days. To this end, The compressive and tensile as well as water absorption tests were conducted on cubic and cylinderical specimens whise dimensions are 10 and 10×20 cm, respectively. In order to provide the required materials, the fine-grained gravel extracted from the Hamesh Bar mine Located in Semnan Province, was used. The results imply that compared to the other materials, application of silica fume and granulated blast furnace slag leave the greatest effects on the concrete performance in a way that averagely, the compressive and tensile strength were improved nearly 1.6 and 3 times in comparison with the control specimen (i.e. reference specimen). Moreover, the water absorption was reduced following addition of various pozzolanic materials excpet silica fume such that according to CEB-FIP Standard, they are classified as average and good concretes.

کلیدواژه‌ها [English]

  • Fly Ash
  • Pervious Concrete Pavement
  • Zeolite
  • Granulated Blast Furnace Slag
  • Silica Fume
-شیرگیر، ب. حسنی، ا. علیزاده گودرزی، ه. (1390)، " تأثیر نوع دانه بندی بر خواص فیزیکی و نفوذپذیری بتن متخلخل در روسازی"، مجله علمی-پژوهشی عمران مدرس، دوره یازدهم، شماره 1. ص. 49-120.
 
 
-­American Concrete Institute. ACI 522R-10. )­2010), “Report on Pervious Concrete”, Michigan, Farmington Hill.
-­American Concrete Institute, (2010), “ACI 522R-10. Report on Pervious Concrete”, Michigan, Farmington Hill.
-­ASTM C642, (2006), “Standard test method for density, absorption, and voids in hardened concrete”, Annual Book of ASTM Standards, Vol. 04, No. 02.
-­Beaudoin JJ, Ramachandran VS., (1992), “A new perspective on the hydration characteristics of cement phases”, Cem Concr Res; 22(4), pp.689–94.
-­CEB-FIP, (1989), “Diagnosis and assessment of concrete structures”, “state of the art report”, CEB Bull, 192, pp.83–85.
 
-­Crouch, LK. Pitt, J. Hewitt, R., “Aggregate effects on previous Portland cement concrete static modulus of elasticity”, Journal of Material in Civil Engineering, Vol. 19, No. 7, 2007, pp. 561–568.
-­Davidovits, J., (1994), “Properties of geopolymer cements”, In 1st international conference on alkaline cements and concretes, Scientific Research Institute on Binder and Materials, Kiev State Technical University Kiev, Ukraine, pp. 131-149.
-­Deb, P.S. Nath, P. Sarker, P.K., (2014), “The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature”, Materials and Design (1980-2015), Vol. 62, pp. 32–39, https://doi.org/10.1016/j.matdes.2014.05.001.
-­Feng NQ, Peng GF., (2005), “Application of natural zeolite to construction and building materials in China”, Construction and Building Materials, Vol. 19, No. 8, 2005,
pp. 579–584.
-­Fujiwara H, Tomita R, Okamoto T, Dozono A, Okabe A., (2013), “Properties of
high-strength porous concrete”, ACI SP179.
-­Glinicki, M.A. Józ´wiak-Niedz´wiedzka,
D. Gibas, K. Da˛browski, M., (2016), “Influence of blended cements with Calcareous fly ash on chloride ion migration and carbonation resistance of concrete for durable structures”, Materials, Vol. 9, No.18, pp. 1-15. doi:10.3390/ma9010018 .
-­INSO581, (2015), “Concrete-making curing concrete test specimens in the laboratory- code of practice, 2nd.revision”.
- Lee, J.W. Jang, Y.I. Park, W.S. Kim, S.W., (2016), “A study on mechanical properties of porous concrete using cementless binder”, International journal of concrete structures and materials, Vol.10, No.4, 2016.
pp. 527–537, https://doi.org/10.1007/s40069-016-0166-3.
-­Leng, F. Feng, N. Lu, X., (2000),
"An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete”, Cement and Concrete Research, Vol.30, No.6, 2000, pp. 989–992. https://doi.org/10.1016/S0008-8846(00)00250-7.
-­Li, G. Zhao, X., (2003), “Properties of concrete incorporating fly ash and ground granulated blast-furnace slag”, Cement and Concrete Composites, Vol. 25, No. 3,
pp. 293–299. https://doi.org/10.1016/S0958-9465(02)00058-6.
-­Lian C, Zhuge Y., (2010), “Optimum mix design of enhanced permeable concrete – an experimental investigation. Constr Build Mater, 24(12), pp.2664–2671.
-­Malhotra VM., )1976(, “No-fines concrete: Its properties and applications”, J ACI., 73(11), pp.628–44.
-­Mehta, P.K., (1986), Concrete: Structure, Properties and Materials; Prentice-Hall: Englewood Cliffs, NJ, USA.
- Mindess, S. Young, JF. Darwin, D., (2002), Concrete, USA: Prentice Hall.
-­Mumpton, FA., (1993), editor, “Mineralogy and geology of natural zeolites”, New York: Reprint of mineralogical society of America’s reviews in mineralogy.
-­Neville AM., (1995), “Properties of concrete”, England: Longman Group Ltd.
-­Okoye, F.N. Durgaprasad, J. Singh, N.B., (2016), “Effect of silica fume on the mechanical properties of fly ash
based-geopolymer concrete”, Ceramics International, Vol. 42, No. 2, Part B,
pp. 3000-3006.
-­Pachideh G, Gholhaki M, Moshtagh A., (2020), " Performance of concrete containing recycled springs in post-fire conditions­", Proceedings of the Institution of Civil Engineers-Structures and Buildings,
Vol. 173, No. 1, pp.3-16.
-­Pachideh G, Gholhaki M, Moshtagh A., (2019), "­Performance of porous pavement containing different types of pozzolans", International Journal of Engineering, Vol. 32, No. 9, pp.1277-1283.
-­Pachideh G., Gholhaki M., (2020), "Assessment of post-heat behavior of cement mortar incorporating silica fume and granulated blast-furnace slag", Journal of Structural Fire Engineering, Vol. 11, No. 2, pp.221-246.
-­Pachideh G, Gholhaki M., (2021),
"An experimental into effect of temperature rise on mechanical and visual characteristics of concrete containing recycled metal spring", Structural Concrete, Vol. 22, No. 1, pp.550-565.
-­Prakash, V. Chandrasekar, K. Vinoth, P., (2018), “Partial Replacement of Silica Fume and Fly Ash in Pervious Concrete”, International Research Journal of Engineering and Technology (IRJET), Vol. 05, No. 05, pp. 1823-1825.
-­Roy DM, Gouda GR., (1973), “Porosity–strength relation in cementitious materials with very high strengths”, J Am Ceram Soc; 53(10), pp.549–50.
-­Sata, V. Sathonsaowaphak, A. Chindaprasirt, P., (2012), “Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack”, Cement and Concrete Composites, Vol. 34, No. 5,
pp. 700-708.
-­Song, W. Yin, J., (2016), “Hybrid effect evaluation of steel fiber and carbon fiber on the performance of the fiber reinforced concrete”, Materials, Vol. 9, No. 8,
pp. 704.
-­Sumanasooriya, MS. Neithalath, N., (1988), “Pore structure features of previous concretes proportioned for desired porosities and their performance prediction”, Cement and Concrete Composites, Vol. 33, No, 8,
pp. 778–787.
-­­Sutikulsombat, S. Srichumpong, T. Boonanunwong, P. Tippayasam, C. Leonelli, C. Chindaprasirt, P. Chaysuwan, D., (2018), “Development of Thai Lignite Fly Ash and Metakaolin for Pervious Geopolymer Concrete”, Key Engineering Materials, Vol. 766, pp. 294-299.
doi:10.4028/www.scientific.net/KEM.766.294.
-­Wongsa, A. Zaetang, Y. Sata, V. Chindaprasirt, P., (2016), “Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates”, Construction and Building Materials,  Vol. 111, pp. 637-643.
-­Yavuz Corapcioglu M, editor., (1994), “Advances in porous media. Amsterdam (Netherlands): Elsevier.
-­Bruce K. Ferguson, (2005), “Porous Pavement, Tailor and Francis Group”.
-­Croney, David, and Paul Croney, (1998), “Design and Performance of Road Pavements”, New York McGraw Hill.
-­Deo, O. Neithalath, N., (2010), “Compressive behavior of previous concretes and a quantification of the influence of random pore structure features”, Material Science and Engineering, Vol. 528, No. 1, pp. 402–412.
-­Ghafoori N., (1995), “Development of
No-fines concrete pavement applications”,
J. Transport Eng., 121(3), pp.283–288.
-­Huang, B. Wu, H. Shu, X. Dong, Q. Burdette, EG., (2010), “Laboratory evaluation of permeability and strength of polymer-modified pervious concrete”, Construction and Building Materials,
Vol. 24, No. 5, pp. 818–823.
-­Kevern, JT., (2008), “Advancement of pervious concrete durability”, Ph.D. dissertation, Iowa State University, Ames, IA.
-­Meininger R., (1988), “No-fines pervious concrete for paving, ACI Concr Int;
10-8, pp.20–22.
-­Schaefer VR, Wang K, Sulieman MT, Kevern JT., (2006), “Mix Design Development for Pervious Concrete in Cold Weather Climates, Final Report, Iowa Department of Transportation, National Concrete Pavement Technology Center, Iowa Concrete Paving Association,  85.
-­Schaefer, VR. Wang, K. Sulieman, MT. Kevern, JT., (2006), “Mix design development for pervious concrete in cold weather climates”, Final report, Iowa Department of Transportation, National Concrete Pavement Technology Center, Iowa Concrete Paving Association.
-­Shu, X. Huang, B. Wu, H. Dong, Q. Burdette, EG., (2011), “Performance comparison of laboratory and field produced pervious concrete mixtures”, Construction and Building Materials, Vol. 25, No. 8,
pp. 3187–3192.
-­Tho-in, T. Sata, V. Chindaprasirt, P. Jaturapitakkul, C., (2012), “Pervious high-calcium fly ash geopolymer concrete”, Construction and Building Materials, Vol. 30, 2012, pp. 366-371.
-­Yanagibashi K, Yonezawa T., (1998), “Properties and performance of green concrete”, ACI SP179.
-­Yang J., Jiang G., (2003), “Experimental study on properties of pervious concrete pavement materials”, Cem Concr Res; 33, pp.381–386.
-­Yang, J. Jiang, G., (2003), “Experimental study on properties of pervious concrete pavement materials”, Cement and Concrete Research, Vol. 33, No. 3, pp. 381–386.