کنترل هوشمند ترافیک بر مبنای مدل ترکیبی منطق فازی و یادگیری تقویتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده هنر و معماری، دانشگاه تربیت مدرس، تهران، ایران

2 استادیار، دانشکده هنر و معماری، دانشگاه تربیت مدرس، تهران، ایران

3 دانشیار، دپارتمان حوادث و مدیریت بحران، دانشگاه یورک، تورنتو، کانادا

چکیده

افزایش تعداد وسایل نقلیه در خیابان‌ها، مسئله ازدحام ترافیک شهری نامیده می‌شود. یکی از روش‌های حل این مسئله، کنترل زمان چراغ‌های راهنمایی تقاطع‌هاست. در این پژوهش، مدل مورداستفاده، مدل فضای حالت سبز-قرمز بوده و چراغ زرد به‌عنوان رنگ سوم، به مدل‌سازی اضافه شده است. برای کنترل تقاطع چراغ‌دار از کنترل‌کننده ترکیبی فازی-یادگیری تقویتی استفاده شده که هسته اصلی آن، الگوریتم Fuzzy Q-Iteration است. طول صف هر خیابان به‌عنوان متغیر فازی در نظر گرفته می‌شود. کنترل‌کننده با توجه به طول صف پشت چراغ، سیگنال کنترلی را تولید می‌کند. سیگنال کنترلی تولیدی، مدت‌زمان چراغ سبز در هر خیابان در طول یک چرخه است. نتایج به‌دست‌آمده، بیانگر این است که کنترل‌کننده پیشنهادی نسبت کنترل‌کننده زمان ثابت، با معیار زمان انتظار خودروها، عملکردی مشابه یا بهتر داشته است. در نرخ جریان ورودی زیاد، عملکرد کنترل‌کننده دارای بهبود قابل‌ملاحظه‌ای در کاهش زمان انتظارها بوده است. علاوه بر این، طول صف در خیابان‌های دارای نرخ جریان ورودی زیاد، به این علت که عامل سعی می‌کند ، در خیابان‌های با نرخ جریان زیاد، سیگنال کنترلی بزرگ‌تری که به معنی زمان سبز بیشتر برای آن خیابان است، تولید کند، کاهش می‌یابد. طبق مدل پیشنهادی، میزان تعداد خودروها در هر خیابان چهارراه هوشمند از حدود 30 خودرو تجاوز نمی‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Intelligent traffic control based on a combined model of Fuzzy logic and Reinforcement learning

نویسندگان [English]

  • Nasim Ghasemi 1
  • Ali Safavi 2
  • Hamid Reza Saremi 2
  • Ali Asgary 3
1 Ph.D., Student, Faculty of Art and Architecture, Tarbiat Modares University, Tehran, Iran.
2 Assistant Professor, Department of Arts and Architecture, Tarbiat Modares University, Tehran, Iran.
3 Associate Professor, Department of Disaster and Emergency Management, York University, Toronto, Canada.
چکیده [English]

Increasing the number of vehicles on the streets is called the problem of urban traffic congestion. One way to solve this problem is to control the timing of traffic lights. In this research, the model used is the green-red space model and the yellow light as a third color has been added to the modeling. To control the illuminated intersection, a fuzzy amplifier-learning controller is used, the core of which is the Fuzzy Q-Iteration algorithm. The length of each street queue is considered as a fuzzy variable. The controller generates a control signal according to the length of the queue behind the light. The output control signal is the duration of the green light on each street during a cycle. The results show that the proposed controller had a similar or better performance than the fixed time controller ratio with the vehicle waiting time criterion. At high input current rates, controller performance has improved significantly in reducing waiting times. In addition, the queue length on streets with high input flow rates is reduced because the agent tries to generate a larger control signal on high flow rates streets, which means more green time for that street. According to the proposed model, the number of cars on each street of the smart intersection does not exceed about 30 cars.

کلیدواژه‌ها [English]

  • Traffic
  • Intersection
  • Fuzzy Logic System
  • Reinforcement Learning
  • Fuzzy Q-Iteration Algorithm
-Amirgholy, M., Gao, H.O., (2017), “Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: user equilibrium, system optimum, and pricing strategies”, Transp. Res. Part B: Methodol. 104, pp. 215–237.
-Amirgholy, M., Shahabi, M., Gao, H.O., (2020), “Traffic automation and lane management for communicant, autonomous, and human-driven vehicles”, Transp. Res. Part C: Emerg. Technol., (In Press).
-Amoozadeh, M., Deng, H., Chuah, C.N., Zhang, H.M., Ghosal, D., (2015), “Platoon management with cooperative adaptive cruise control enabled by vanet”, Veh. Commun. 2 (2), pp.110–123.
-Aria, E., Olstam, J., Schwietering, C., (2016), “Investigation of automated vehicle effects on driver’s behavior and traffic performance”, Transp. Res. Proc. 15, pp.761–770.
-Bekiaris-Liberis, N., Roncoli, C., Papageorgiou, M., (2016), “Highway traffic state estimation with mixed connected and conventional vehicles”, IEEE Trans. Intell. Transp. Syst. 17 (12),
pp. 3484–3497.
-Biswas, S., Tatchikou, R., Dion, F., (2006), “Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety”, IEEE Commun. Mag. 44 (1),
pp. 74–82.
-Bose, A., Ioannou, P., (2003), “Mixed manual/semi-automated traffic: a macroscopic analysis”, Transp. Res. Part C: Emerg. Technol. 11 (6), pp. 439–462.
-Chen, D., Ahn, S., Chitturi, M., Noyce, D.A., (2017), “Towards vehicle automation: roadway capacity formulation for traffic mixed with regular and automated vehicles”, Transp. Res. Part B: Methodol. 100, pp. 196–221.
-Daganzo, C.F., (2007), “Urban gridlock: macroscopic modeling and mitigation approaches”, Transp. Res. Part B 41 (1), pp.49–62.
-Daganzo, C.F., Geroliminis, N., (2008), “An analytical approximation for the macroscopic fundamental diagram of urban traffic”, Transp. Res. Part B: Methodol. 42 (6), pp. 771–781.
-Daganzo, C.F., Gayah, V.V., Gonzales, E.J., (2011), “Macroscopic relations of urban traffic variables: bifurcations, multivaluedness and instability”, Transp. Res. Part B: Methodol. 45 (1), pp. 278–288.
-Dulman, S., Nieberg, T., Wu, J., Havinga, P., (2003), “Trade-offbetween traffic overhead and reliability in multipath routing for wireless sensor networks”, In: Proceedings of the 2003 IEEE Wireless Communications and Networking, WCNC 2003, 3. IEEE,
pp. 1918–1922.
-Fernandes, P., Nunes, U., (2015), “Multiplatooning leaders positioning and cooperative behavior algorithms of communicant automated vehicles for high traffic capacity”, IEEE Trans. Intell. Transp. Syst. 16 (3), pp. 1172–1187.
-Fernandes, P., Nunes, U., (2012), “Platooning with IVC-enabled autonomous vehicles: strategies to mitigate communication delays, improve safety and traffic flow”, IEEE Trans. Intell. Transp. Syst. 13 (1), pp. 91–106.
-Fernandes, P., Nunes, U., (2011), “Algorithms for management of a multi-platooning system of IVC-enabled autonomous vehicles, with high traffic capacity”, In: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2011. IEEE, pp. 1935–1941.
-Geroliminis, N., Haddad, J., Ramezani, M., (2013), “Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: a model predic- tive approach”, IEEE Trans. Intell. Transp. Syst. 14 (1),
pp. 348–359.
-Geroliminis, N., Levinson, D.M., (2009), “Cordon pricing consistent with the physics of overcrowding. Transportation and Traffic Theory”, 2009: Golden Jubilee. Springer, Boston, MA, pp. 219–240.
-Geroliminis, N., Daganzo, C.F., (2008), “Existence of urban-scale macroscopic fundamental diagrams: some experimental findings”, Transp. Res. Part B: Methodol,
42 (6), pp. 759–770.
-Geroliminis, N., Daganzo, C.F., (2007), “Macroscopic modeling of traffic in cities”, In: Proceedings of the Transportation Research Board 86th Annual Meeting, No. 07-0413.
-Ghiasi, A., Ma, J., Zhou, F. and Li, X., (2017), “Speed Harmonization Algorithm Using Connected Autonomous Vehicles”, In 96th Annual Meeting of the Transporta- tion Research Board, Washington, DC. https://www.researchgate.net/profile/Amir _ Ghiasi/publication/313425430 _ Speed _ Harmonization _ Algorithm _ using _ Connected _ Autonomous _ Vehicles/links/589a112f4585158bf6f8a996/Speed- Harmonization- Algorithm- using- Connected- Autonomous- Vehicles. Pdf.
-Kockelman, K., Boyles, S., Stone, P., Fagnant, D., Patel, R., Levin, M.W., Sharon, G., Simoni, M., Albert, M., Fritz, H., Hutchinson, R., (2017), “An assessment of autonomous vehicles: traffic impacts and infrastructure needs “(No. FHWA/TX-17/0-6847-1). University of Texas at Austin, Center for Transportation Research, https://rosap.ntl.bts.gov/view/dot/3190.
-Lam, S., Katupitiya, J., (2013), “Cooperative autonomous platoon maneuvers on highways”, In: Proceedings of the Advanced Intelligent Mechatronics (AIM), 2013 IEEE/ASME International Conference on. IEEE,
pp. 1152–1157.
-Le Vine, S., Zolfaghari, A., Polak, J., (2015), “Autonomous cars: the tension between occupant experience and intersection capacity”, Transp. Res. Part C: Emerg. Technol. 52, pp. 1–14.
-Li, Z., Elefteriadou, L., Ranka, S., (2014), “Signal control optimization for automated vehicles at isolated signalized intersections”, Transp. Res. Part C: Emerg. Technol. 49, pp.1–18.
-Lioris, J., Pedarsani, R., Tascikaraoglu, F.Y., Varaiya, P., (2017), “Platoons of connected vehicles can double throughput in urban roads”, Transp. Res. Part C: Emerg. Technol., 77, pp. 292–305.
-Michael, J.B., Godbole, D.N., Lygeros, J., Sengupta, R., (1998), “Capacity analysis of traffic flow over a single-lane automated highway system”, J. Intell. Transp. Syst. 4 (1–2), pp. 49–80.
-Ni, D., Li, J., Andrews, S., Wang, H., (2010), “Preliminary estimate of highway capacity benefit attainable with intellidrive technologies, In: Proceedings of the Intelligent Transportation Systems (ITSC)”, 2010 13th International IEEE Conference on. IEEE,
pp. 819–824.
-Ramezani, M., Haddad, J., Geroliminis, N., (2015), “Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control”, Transp. Res. Part B: Methodol. 74, pp. 1-19.
-Robinson, T., Chan, E., Coelingh, E., (2010), “Operating platoons on public motorways: an introduction to the sartreplatooning programm”, In Proceedings of the 17th world congress on in telligent transport systems, 1, pp. 12.
-Roncoli, C., Papageorgiou, M., Papamichail, I., (2014), “Optimal control for multi-lane motorways in presence of vehicle automation and communication sys- tems”, IFAC Proc. Vol. 47 (3), pp. 4178–4183.
-Shabanpour, R., Golshani, N., Shamshiripour, A., Mohammadian, A.K., (2018), “Eliciting preferences for adoption of fully automated vehicles using best-worst analysis”, Transp. Res. Part C: Emerg. Technol. 93, pp. 463–478.
-Shi, L., Prevedouros, P., (2016), “Autonomous and connected cars: hcm estimates for freeways with various market penetration rates”, Transp. Res. Procedia 15, pp. 389–402.
-Van Arem, B., Van Driel, C.J., Visser, R., (2006), “The impact of cooperative adaptive cruise control on traffic-flow characteristics”, IEEE Trans. Intell. Transp. Syst. 7 (4),
pp. 429–436.
 
 
 
 
 
 
 
 
 
 
 
-Varaiya, P., (1993), “Smart cars on smart roads: problems of control”, IEEE Trans. Autom. Control 38 (2), pp. 195–207.
-Yan, J., Bitmead, R.R., (2005), “Incorporating state estimation into model predictive control and its application to network traffic control”, Automatica 41 (4), pp. 595–604.
-Zito, R., D’este, G., Taylor, M.A.P., (1995), “Global positioning systems in the time domain: how useful a tool for intelligent vehicle-highway systems?”, Transp. Res. Part C: Emerg. Technol. 3 (4), pp. 193–209.
-Zohdy, I., Kamalanathsharma, R., Sundararajan, S., Kandarpa, R., (2015), “Automated vehicles from modeling to real world”, Road Vehicle Automation 2. Springer, Cham, pp. 187–191.