توسعه مدل پیش‌بینی مدول برجهندگی خاک‌های رسی تثبیت شده با استفاده از شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار‌، دانشکده مهندسی عمران، دانشگاه صنعتی سیرجان، سیرجان، ایران

2 دانشیار، دانشکده مهندسی عمران، دانشگاه صنعتی سیرجان، سیرجان، ایران

3 دانشیار، بخش مهندسی عمران، دانشکدۀ فنی- مهندسی، دانشگاه شهید باهنر کرمان، ایران

چکیده

مدول برجهندگی خاک یکی از شاخصهای مهم در طراحی روسازی راههاست که نقش بسیار مهمی در تعیین ضخامت روسازی دارد. تعیین مدول برجهندگی خاکها به روش مستقیم و بر اساس نتایج آزمایشگاهی به دلیل هزینههای بالای آن از جهت تجهیزات و نیروی انسانی معمولاً مقرون به صرفه نیست. لذا بر پایه اطلاعات میدانی گذشته میتوان بر اساس روشهای هوش مصنوعی اقدام به پیشبینی و تعیین این شاخص بر اساس دادههای ورودی نمود. هدف از این مقاله توسعه مدلی جهت پیشبینی مدول برجهندگی خاکهای رسی تثبیت شده با استفاده از شبکه عصبی مصنوعی است. بدین منظور 4 نمونه خاک مختلف تثبیت­شده با افزودنیهایی نظیر آهک، خاکستر بادی و غبار کوره سیمان مورد بررسی قرار گرفتند. در این مقاله از دادههای گزارش شده در پیوست طراحی روسازی به روش آشتو 2002 استفاده شد. با مقایسه خروجیهای بدست آمده با دادههای واقعی بر اساس شاخصهای آماری همچون ضریب رگرسیون و جذر میانگین مربعات خطا مشخص شد که در همه موارد نتایج مطلوبی بدست آمد. مقدار ضریب رگرسیون 99/0 و جذر میانگین مربعات خطا کمتر از 6 درصد نشان از دقت بالای مدل توسعه داده شده در پیشبینی مدول برجهندگی خاکهای تثبیت شده دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of a Model for Predicting the Resilient Modulus of Stabilized Clay Soils Using Artificial Neural Network

نویسندگان [English]

  • Vahid Khalifeh 1
  • Ali Reza Ghanizadeh 2
  • Navid Nadimi 3
1 Assistant Professor, Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran.
2 Associate Professor, Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran.
3 Associate Professor, Civil Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran.
چکیده [English]

In road pavement design, soil resilient modulus is one of the factors that play a very important role in determining pavement thickness. In the past, determining the Resilient Modulus of soil directly from laboratory results has not always been practical due to its high costs, both in terms of equipment and labor. Therefore, it is possible to predict and determine this parameter based on past field data using artificial intelligence. Our goal in this paper is to develop a model for predicting the resilient modulus of stabilized clay soils using artificial neural networks. In this study, four different soil samples stabilized with additives, such as lime, fly ash, and cement kiln dust, were examined using the pavement design appendix of the AASHTO 2002 specification. By comparing the results to the laboratory data based on the statistical indicators such as regression coefficient (0.99), root mean square error (less than 6 percent), we found that the artificial neural network was highly accurate in predicting the resilient modulus.
.

کلیدواژه‌ها [English]

  • Resilience Modulus
  • Artificial Neural Network
  • Prediction
  • Pavement
-Amiri, A. M., Nadimi, N., & Yousefian, A. (2020). Comparing the efficiency of different computation intelligence techniques in predicting accident frequency. IATSS Research, 44(4), 285–292.doi.org/10.1016/j.iatssr.2020.03.003
-Ardah, A., Chen, Q., & Abu-Farsakh, M. (2017). Evaluating the performance of very weak subgrade soils treated/stabilized with cementitious materials for sustainable pavements. Transportation Geotechnics, 11, 107–119.. doi.org/https://doi.org/10.1016/j.trgeo.2017.05.002
-Dhar, S., & Hussain, M. (2021). The strength and microstructural behavior of lime stabilized subgrade soil in road construction. International Journal of Geotechnical Engineering, 15(4), 471–483.doi.org/10.1080/19386362.2019.1598623
-Ghorbani, B., Arulrajah, A., Narsilio, G., Horpibulsuk, S., & Bo, M. W. (2020). Development of genetic-based models for predicting the resilient modulus of cohesive pavement subgrade soils. Soils and Foundations, 60(2), 398–412.
doi.org/10.1016/j.sandf.2020.02.010
-Hanandeh, S., Ardah, A., & Abu-Farsakh, M. (2020). Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula. Transportation Geotechnics, 24, 100358.
doi.org/10.1016/j.trgeo.2020.100358
-Hanittinan, W. (2007). Resilient modulus prediction using neural network algorithm. The Ohio State University.
Hossain, M. (2008). Characterization of Subgrade Resilient Modulus for Virginia Soils and Its Correlation with the Results of Other Soil Tests.
-Ikechukwu, A. F., Hassan, M. M., & Moubarak, A. (2021). Resilient modulus and microstructure of unsaturated expansive subgrade stabilized with activated fly ash. International Journal of Geotechnical Engineering, 15(8), 915–938.
 doi.org/10.1080/19386362.2019.1656919
-Jue, L., Junhui, Z., Guoping, Q., Jianlong, Z., & Yuqing, Z. (2019). Three-Dimensional Simulation of Aggregate and Asphalt Mixture Using Parameterized Shape and Size Gradation. Journal of Materials in Civil Engineering, 31(3), 4019004.
doi.org/10.1061/(ASCE)MT.19435533.0002623
-Kim, S.-H., Little, D. N., Masad, E., & Lytton, R. L. (2005). Estimation of level of anisotropy in unbound granular layers considering aggregate physical properties. International Journal of Pavement Engineering, 6(4), 217–227.
doi.org/10.1080/10298430500335244
-Kim, S.-H., Yang, J., & Jeong, J.-H. (2014). Prediction of subgrade resilient modulus using artificial neural network. KSCE Journal of Civil Engineering, 18(5), 1372–1379. doi.org/10.1007/s12205-014-0316-6
-Kim, S. (2004). Determination of aggregate physical properties and its effect on
cross-anisotropic behavior of unbound aggregate materials. Texas A&M University.
-Musharraf, Z., Pranshoo, S., Ali, E., & Luther, W. (2010). Neural Network Modeling of Resilient Modulus Using Routine Subgrade Soil Properties. International Journal of Geomechanics, 10(1), 1–12.
doi.org/10.1061/(ASCE)15323641(2010)10:1(1)
-Nazzal, M. D., & Tatari, O. (2013). Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus. International Journal of Pavement Engineering, 14(4), 364–373. doi.org/10.1080/10298436.2012.671944
-Okeke, C. A. U. (2020). Engineering behaviour of lime- and waste ceramic dust-stabilized expansive soil under continuous leaching. Bulletin of Engineering Geology and the Environment, 79(4), 2169–2185. doi.org/10.1007/s10064-019-01648-2
-Pahno, S., Yang, J. J., & Kim, S. S. (2021). Use of Machine Learning Algorithms to Predict Subgrade Resilient Modulus. In Infrastructures,  Vol. 6, Issue 6.doi.org/10.3390/infrastructures6060078
-Pal, M., & Deswal, S. (2014). Extreme Learning Machine Based Modeling of Resilient Modulus of Subgrade Soils. Geotechnical and Geological Engineering, 32(2), 287–296.doi.org/10.1007/s10706-013-9710-y
-Park, H. I., Kweon, G. C., & Lee, S. R. (2009). Prediction of Resilient Modulus of Granular Subgrade Soils and Subbase Materials using Artificial Neural Network. Road Materials and Pavement Design, 10(3), 647–665. doi.org/10.1080/14680629.2009.9690218
-Raju, M. M., Srivastava, R. K., Bisht, D. C. S., Sharma, H. C., & Kumar, A. (2011). Development of Artificial Neural-Network-Based Models for the Simulation of Spring Discharge. Advances in Artificial Intelligence, 2011, 686258.
doi.org/10.1155/2011/686258
-Sadrossadat, E., Heidaripanah, A., & Ghorbani, B. (2018). Towards application of linear genetic programming for indirect estimation of the resilient modulus of pavements subgrade soils. Road Materials and Pavement Design, 19(1), 139–153.
 doi.org/10.1080/14680629.2016.1250665
-Sung-Hee, K., Erol, T., N., L. D., & Nakseok, K. (2007). Effect of Gradation on Nonlinear Stress-Dependent Behavior of a Sandy Flexible Pavement Subgrade. Journal of Transportation Engineering, 133(10),
582–589.doi.org/10.1061/(ASCE)0733-947X(2007)133:10(582)
-Yang, Y. Zhang, Q. (2007). Analysis for the results of point load testing with artificial neural network. Computer Methods & Advances in Geomechanics.
-Zhang, J., Gu, F., & Zhang, Y. (2019). Use of building-related construction and demolition wastes in highway embankment: Laboratory and field evaluations. Journal of Cleaner Production, 230, 1051–1060.doi.org/https://doi.org/10.1016/j.jclepro.2019.05.182
-Zhang, J., Peng, J., Liu, W., & Lu, W. (2021). Predicting resilient modulus of fine-grained subgrade soils considering relative compaction and matric suction. Road Materials and Pavement Design, 22(3), 703–715. doi.org/10.1080/14680629.2019.1651756
-Zhang, J., Peng, J., Zeng, L., Li, J., & Li, F. (2021). Rapid estimation of resilient modulus of subgrade soils using performance-related soil properties. International Journal of Pavement Engineering, 22(6), 732–739. doi.org/10.1080/10298436.2019.1643022