مدل‌سازی شاخص وضعیت روسازی (PCI) با استفاده از رگرسیون خطی چندگانه و شبکه عصبی انتشار برگشتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

2 دانشیار، مرکز تحقیقات راه مسکن و شهرسازی، تهران، ایران

چکیده

یکیازمهمتریناهدافیکسیستممدیریتروسازی،تعییناولویت‌هاوزمانبهینهبرایتعمیرات،از طریقپیش‌بینیوضعیتروسازیاست.درواقعهدفسیستممدیریتروسازی(PMS)،ترمیمونگهداریدر مراحلنخستینخرابیوصرفه‌جوییدرهزینه‌هاست. از این رو در این پژوهش به منظور تعیین شاخص وضعیت روسازی (PCIدو مدل رگرسیون خطی چندگانه و شبکه عصبی انتشار برگشتی را برازش داده و قدرت تخمین آنها مقایسه گردید. در این راستا خرابی‌های سه آزادراه کربلا، پل زال و تهران قم مورد بررسی قرار گرفته، تا بدین وسیله بتوان روش مناسب برای پیش‌بینی شاخص وضعیت روسازی، به منظور شناسایی بهینه‌ترین زمان تعمیر و نگهداری در جهت کاهش هزینه‌های آن، شناسایی گردد. برای دستیابی به هدف مورد نظر برای ارزیابی قطعات (واحدهای نمونه) از نرم‌افزار‌های Micropaver و برای ساخت مدل‌ها از نرم افزار MATLAB و SPSS استفاده گردید. به منظور برداشت خرابی‌های واحد‌های نمونه به فواصل 100 متر و قطعات به فواصل 500 از این مسیر برداشت شد. متغیرهای مورد بررسی در تحلیل مدل‌ها شامل: طول عمر قطعه در زمان بازرسی (ماه)، عرض واحد نمونه، متوسط AADT در طول عمر قطعه، متوسط درصد وسایل نقلیه سنگین در طول عمر قطعه، بیشینه دما در طول عمر قطعه در سال 1396،کمینه دما در طول عمر قطعه در سال 1396 وضخامت روسازی (سانتی­متر) می‌باشد. بر اساس نتایج به دست آمده میزان عملکرد مدل شبکه عصبی بر اساس شاخص میانگین مربعات خطا (MSE) و همچنین شاخص R2که به ترتیب برابر است با 0.95 و 0.87 می‌باشد که در مقایسه با مدل رگرسیون خطی چندگانه (0.139) دارای اعتبارسنجی بیشتری جهت پیش‌بینی وضعیت آینده روسازی می‌باشد. علاوه بر آن با توجه به مدل شبکه عصبی می‌توان دریافت طول عمر قطعه بیشترین اهمیت را در ساخت شبکه عصبی داشته (0.55) و پس از آن بیشینه دما (0.122) و درصد وسایل نقلیه سنگین (0.120) متغیرهای مهم بعدی در پیش‌بینی وضعیت روسازی راه‌ها می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the Pavement Condition Index (PCI) of Pavement by Multiple linear regression and neural network back propagation

نویسندگان [English]

  • Amin Farajollahi 1
  • Mohammad Reza Ahadi 2
  • Abbasali Tayefi Nasrabadi 1
1 Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
2 Associate Professor, Transportation Research Institute, Road, Housing and Urban Development Research Center, Tehran, Iran.
چکیده [English]

One of the most important goals of a pavement management system is determination of optimal priorities and time for repairs, through prediction of pavement status. In fact, the purpose of the PMS system is to repair and maintain the early stages of cost savings and savings. . Therefore, in this study, in order to determine the Pavement Condition Index (PCI), two linear regression models and back propagation neural network models were fitted and their power estimates were compared.  In this regard, the damages of three freeways of Karbala, Paul Zal and Tehran - Qom have been studied to identify the appropriate method for predicting pavement status index in order to identify the optimal maintenance time to reduce its costs. . Micropaver software and MATLAB and SPSS software were used for modeling and evaluation of components. This track was sampled in order to capture the failure of sample units at 100 m intervals and parts at 500 m intervals. The variables considered in the model analysis included: segment lifetime at inspection time (month), unit width, average AADT at segment lifetime, average percentage of heavy vehicles at segment lifetime, maximum temperature at segment lifetime in 1396, minimum Temperature is the lifetime of the piece in 1396 and the thickness of the pavement (cm). . The results show that the performance of neural network model based on mean square error index (MSE) as well as R2 index is 0.95 and 0.87, respectively, which is more valid than the multiple linear regression model (0.139). The future is paved. In addition, according to the neural network model, the lifetime of the segment can be most important in neural network construction (0.55) and then maximum temperature (0.122) and percentage of heavy vehicles (0.120) are the next important variables in predicting pavement status of roads.

کلیدواژه‌ها [English]

  • Pavement Condition Index
  • prediction
  • Neural Network
  • Damage
- Beck, H. Van Sickle, E., (2010), “Final Report, Current Practices in Pavement Performance Modeling, PROJ ECT 08-C07), Pennsylvania Department of Transportation, Report No. FHWA-PA-2010-007-080307.
 
- Nazzal, M. Md. Iqbal, Tanvir S. Kim, Abbas,  A. Akentuna, M. Quasem,  T., (2016), “Evaluation of the long-term performance and life cycle costs of GTR asphalt pavements, Journal of Construction and Building Materials 114,
pp. 261–268.
 
-A. Alavi, H. Hasni, N. Lajnef, K. Chatti, (2016), “Continuous health monitoring of pavement systems using smart sensing technology, Journal of Construction and Building Materials 114 pp.719–736. https://doi.org/10.1016/j.conbuildmat.2016.03.12.
 
- Chan, A. Keoleian, G. Gabler, E., (2008), “Evaluation of lifecycle cost analysis practices used by the Michigan Department of Transportation”, Journal of Transportation Engineering, 134(6): pp.236–245. https://doi.org/10.1061/(ASCE)0733-947X(2008)134:6(236).
 
-Alrashydah, E. Abo-Qudais, S., (2018), “Modeling of creep compliance behavior in asphalt mixes using multiple regression and artificial neural networks, Journal of Construction and Building Materials 159 pp.635–641, https://doi.org/10.1016/j.conbuildmat.2017.10.132.
 
-Arambula,-E. George, R. Xiong, Hall, W. G., (2011), “Development and Validation of Pavement Performance Models for the State of Maryland”, Transportation Research Record: Journal of the Transportation Research Board. 2225(1): pp.25-31.
 
-Corazza­, M. P.D. Mascio, Moretti, L.,  (2016), “Managing sidewalk pavement maintenance: A case study to increase pedestrian safety”, Journal of Traffic and Transportation Engineering (English Edition, Vol. 3, Issue 3, pp. 203-214, https://doi.org/10.1016/j.jtte.2016.04.001.
 
-­Deshmukh, M., (2010), “Development of equations to determine the increase in pavement condition due to treatment and the rate of decrease in condition after treatment for a local agency pavement network: Texas A&M University; https://books.google.com/books?id=nniwAQAACAAJ.
 
-G. Sollazzo, T.F. Fwa, Bosurgi, G., (2017), “An ANN model to correlate roughness and structural performance in asphalt pavements, Journal of Construction and Building Materials 134 pp.684693.https://doi.org/10.1016/j.conbuildmat.2016.12.186.
 
-H. Zhang, G.A. Keoleian, M.D. Lepech, (2012), “Network-Level Pavement Asset Management System Integrated with Life-Cycle Analysis and Life-Cycle Optimization. Journal of Infrastructure Systems, 19(1): pp.99–107, https://doi.org/10.1061/(ASCE)IS.
1943-555X.0000093
.
 
-Haas, R., Hudson, W.R. and Zaniewski, J., (1994), "Modern pavement management",Krieger Pub. Co., USA.
 
-Karasahin, M., Terzi, S., (2016), "Performance model for asphalt concrete pavement based on the fuzzy logic approach", Transport, Vol. 29:1,
pp. 18–27.
 
-M.S.R. Amin, L.E. Amador, (2014), “The Multi-criteria based Pavement Management System for Regional Road Network of Atlantic Provinces of Canada. International Journal of Pavements, 13, pp.1-2-3.  https://www.researchgate.net/publication/273202230.
 
-M.S.R. Amin, L.E. Amador, (2016), “Pavement management with dynamic traffic and artificial neural network: a case study of Montreal, Canadian Journal of Civil Engineering”, 43(3): pp.241-251, https://doi.org/10.1139/cjce-2015-0299.
 
-Ognjenovic, A. Ishkov, D. Cvetkovic, D. Peric,  Romanovich, M., (2016), “Analyses of Costs and Benefits in the Pavement Management Systems, Procedia Engineering V165, pp.954 – 959, https://doi.org/10.1016/j.proeng.2016.11.805.
 
-Premkumar, L. and Varvik, W.R., (2016), "Enhancing pavement performance prediction models for the Illinois Tollway System", International Journal of Pavement Research and Technology, Vol. 1, Issue 9, pp.14-16.
 
-Robinson, R., Danielson, U. and Snaith, M., (1998), "Road maintenance
management", Macmillan Pub., UK.
 
-­Salem, O. Abourizk, S. Ariaratnam, S., (2003), “Risk-based life-cycle costing of infrastructure rehabilitation and construction alternatives. Journal of Infrastructure Systems, 9(1), pp.6–15. DOI: 10.1061/(ASCE)1076-0342(2003)9:1(6).
 
-Setyawan, A., Nainggolan, J. and Budiarto, A., (2015), "Predicting the remaining service life of road using pavement condition index", Procedia Engineering, Vol.125, pp. 417 – 423.
 
-Shahin, MY, (2005), “Pavement Management for Airports Roads and Parking Lots”. New York: Springer Science and Business Media; DOI 10.1007/b101538.
 
 
-Sollazo, G., Fwa, T. F. and Bosurgi, G., (2017), "An ANN model to correlate roughness and structural performance in asphalt pavements", Construction and Building Materials, Vol. 134,
pp. 684 – 693.