تجزیه‌ و تحلیل مبتنی بر سناریو شیوع کرونا در ایران توسط مدل‌سازی پویائی‌شناسی سیستم‌ها- با محوریت سیستم حمل‌ونقل

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی‌ارشد،‌ دانشکده مهندسی صنایع و سیستم‌های مدیریت، دانشگاه صنعتی امیرکبیر، تهران، ایران.

2 دانش آموخته کارشناسی‌ارشد، دانشکده مهندسی صنایع و سیستم‌های مدیریت، دانشگاه صنعتی امیرکبیر، تهران، ایران

3 استادیار، دانشکده مهندسی صنایع و سیستم‌های مدیریت، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

امروزه بیماری کرونا به یکی از تهدیدات بزرگ جهانی تبدیل‌شده است. ریسک بالای این بیماری در انتقال بین انسان‌ها و نبود دارو و واکسن برای مقابله با آن موجب شده است که برنامه‌ریزی‌های متعددی برای پیشگیری و تخمین روندهای مرتبط با آن انجام شود.کرونا برای اولین بار در تاریخ 31 دسامبر 2019 در شهر ووهان چین گزارش‌شده است. این بیماری پس از مدت‌زمان کوتاهی در کشورهای دیگر گسترش‌ یافت و به یک بیماری همه‌گیر جهانی تبدیل‌ شد. ازآنجاکه نحوه برنامه‌ریزی در استفاده از سیستم حمل‌ونقل توسط مردم تأثیر مهمی در کنترل یا اشاعه این بیماری دارد، با محور قرار دادن این عنصر یک مدل پویائی شناسی سیستم‌ها در این مقاله ارائه‌شده است. این مدل به ‌بررسی دو سناریو متفاوت در خصوص افراد مبتلا، میزان مرگ‌ومیر و میزان بهبودی می‌پردازد. این سیستم باتوجه به زیرسیستم‌های مختلفی مانند سیستم‌های مراقبت‌های بهداشتی، حمل‌ونقل، تماس بین مردم و ظرفیت‌های شبکه‌های مواد غذایی و دارویی طراحی‌شده است. در مدل پیشنهادی این مقاله از یک ساختار جریان برای نشان دادن چگونگی تأثیر بخش‌های مختلف سیستم‌ها و زیرسیستم‌های وابسته بر شیوع این بیماری در طولانی‌مدت استفاده می‌شود. نتایج گرفته‌شده از مدل پیشنهادی نشان می‌دهد که بخش‌های مختلف سیستم اصلی و زیرسیستم‌های مرتبط با آن در مدل‌سازی پویائی شناسی سیستم‌ها دارای حساسیت‌ها و تأثیرات متفاوتی هستند. تحلیل این مدل باتوجه به نتایج دو سناریو بررسی‌شده در اتخاذ تصمیم توسط دولتمردان مفید خواهد بود. نتایج مرتبط با مدل پیشنهادی با فرض عدم‌وجود واکسن یا داروی مؤثر در یک سال آینده بیانگر این است که تغییر در یک قسمت از سیستم می‌تواند مرگ‌ومیر کرونا را در شش ماه از 10500 نفر به بیش از 1.6 میلیون نفر افزایش دهد. بنابراین میزان مرگ‌ومیر این بیماری به سیاست‌گذاری‌ها و رفتارهای عوامل مؤثر در مدل وابسته است و با برنامه‌ریزی مناسب در مقابل هر سناریو می‌توان میزان مرگ‌ومیر را کاهش داد.

کلیدواژه‌ها


عنوان مقاله [English]

Scenario-Based Analysis about COVID-19 Outbreak in Iran using Systematic Dynamics Modeling - with a Focus on the Transportation System

نویسندگان [English]

  • Zeynab Rahimi Rise 1
  • Mohammad Mehdi Ershadi 2
  • Seyed Hamidreza Shahabi Haghighgi 3
1 M.Sc., Grad., Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran.
2 Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran.
3 Assistant Professor, Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran.
چکیده [English]

Today, coronavirus (COVID-19) has become a major global threat. A lot of programs are proposed to prevent and estimate its associated processes due to the high risk of its transmitting among humans and the lack of drugs and vaccines to stop it. COVID-19 was first reported on 31 December 2019 in Wuhan, China. After a short time, the disease spread to other countries and became a global disease. According to the lives of most people, the transportation system has a significant impact on controlling or spreading the disease. Therefore, this subsystem is considered as an element of a proposed system dynamics model in this article. This model examines two different scenarios for infected people, mortality rates, and recovery rates. The system is designed according to various subsystems such as health care systems, transportation, public contact, and the capacity of food and drug networks. In the proposed model of this paper, a flow structure is utilized to show the effects of different sections of systems and subsystems depend on the COVID-19 outbreak over a long time. The results of the proposed model show that different parts of the main system and its related subsystems have different sensitivities and effects. Analyzing this model will be useful for government decision-making based on the results of the two scenarios examined. It is assumed that there is no effective vaccine or drug in the next 6 months. The results of the proposed model show that different changes in subsystems could increase COVID-19 mortality in six months from 10,500 to more than 1.6 million. Therefore, the mortality rate of this disease depends on the policies and behaviors of the factors influencing the model. Consequently, the mortality rate can be reduced based on proper planning against each scenario.

کلیدواژه‌ها [English]

  • transportation system
  • Systems Dynamics Modeling
  • COVID-19
  • Iran Healthcare System
  • Comprehensive Outbreak
-شهابی حقیقی، س.ح.ر. و ارشادی، م. م. (1397)، "سازمان مدیریت بحران، درس‌هایی از ایران و جهان"، انتشارات دانشگاه صنعتی امیرکبیر.
 
-شهابی حقیقی، س.ح.ر.، ارشادی، م.م. و رحیمی ریسه، ز.، (1398)، "مدیریت بحران و پاسخ ملی"، انتشارات دانشگاه صنعتی امیرکبیر.
 
-Ager, A. K., Lembani, M., Mohammed, A., Ashir, G. M., Abdulwahab, A., de Pinho, H. & Zarowsky, C., (2015), “Health service resilience in Yobe state, Nigeria in the context of the Boko Haram insurgency: a systems dynamics analysis using group model building”, Conflict and health, 9(1), pp.30.
 
-“Centers for Disease Control and Prevention”, available at: https://www.cdc.gov.
 
-Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y. ... & Yu, T., (2020), “Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study”, The Lancet, 395(10223), pp.507-513.
-Chinazzi, M., Davis, J. T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S. & Viboud, C., (2020), “The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak”, Science.
 
-Darabi, N., & Hosseinichimeh, N., (2020), “System Dynamics Modeling in Health and Medicine: A Systematic Literature Review”, System Dynamics Review.
 
-Du, Z., Wang, L., Cauchemez, S., Xu, X., Wang, X., Cowling, B. J., & Meyers, L. A., (2020), “Risk for transportation of 2019 novel coronavirus disease from Wuhan to other cities in China”. Emerging infectious diseases,
pp.26 (5).
 
-Ershadi, M. M., & Shemirani, H. S., (2019), “Using mathematical modeling for analysis of the impact of client choice on preventive healthcare facility network design”. International Journal of Healthcare Management, pp.1-15.
 
-Fauci, A. S. Lane, H. C., & Redfield, R. R., (2020), “Covid-19—navigating the uncharted”.
-Fiddian-Qasmiyeh, E., & Ager, A., (2013), “Local Faith Communities and the promotion of resilience in humanitarian situations”.
 
-Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y. ... & Cheng, Z., (2020), “Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China”, The Lancet, 395(10223), pp.497-506.
 
-Hui, D. S., Azhar, E. I., Madani, T. A., Ntoumi, F., Kock, R., Dar, O. ... & Zumla, A. (2020), “The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China”. International Journal of Infectious Diseases, 91, pp.264.
 
-Hyndman, R.J. and Koehler, A.B., (2006), “Another look at measures of forecast accuracy”, International journal of forecasting, 22(4), pp.679-688.
 
-Ivanov, D., (2020), “Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case”. Transportation Research Part E: Logistics and Transportation Review, 136, 101922.
 
-Kieny, M. P., Evans, D. B., Schmets, G., & Kadandale, S., (2014), “Health-system resilience: reflections on the Ebola crisis in western Africa”.
 
-Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., & Shaman, J., (2020), “Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). 
 
-Lounsbury, D. W., Schwartz, B., Palma, A., & Blank, A., (2015), “Simulating patterns of patient engagement, treatment adherence, and viral suppression: A system dynamics approach to evaluating HIV care management”. AIDS patient care and STDs, 29(S1), S55-S63.
 
-Rohleder, T. R., Cooke, D., Rogers, P., & Egginton, J., (2013), “Coordinating health services: an operations management perspective. In Handbook of Healthcare Operations Management, pp. 421-445.
 
-Shin, N., Kwag, T., Park, S., & Kim, Y. H., (2017), “Effects of operational decisions on the diffusion of epidemic disease: a system dynamics modeling of the MERS-CoV outbreak in South Korea. Journal of theoretical biology, 421, pp.39-50.
 
-Wang, M., Jiang, A., Gong, L., Luo, L., Guo, W., Li, C. ... & Chen, Y., (2020), “Temperature significant change COVID-19 Transmission in 429 cities, medRxiv.
 
 
 
 
 
 
-Wang, W., Li, Y., & Zhang, J., (2009), “System Dynamics Modeling of SARS Transmission-A Case Study of Hebei Province”, In 2009 International Conference on Management and Service Science, 
pp. 1-4. IEEE.
 
-Web of Science, available at: http://apps.webofknowledge.com.
 
 
 
-WHO, (2020), “Emergencies preparedness, response, Pneumonia of unknown origin – China. Disease outbreak news, 5 January,  Available at: https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en.
 
-World meters, (2020), "COVID-19 CORONAVIRUS OUTBREAK.", available at: https://www.worldometers.info/coronavirus.
 
-Wu, Y. C., Chen, C. S., & Chan, Y. J., (2020), “The outbreak of COVID-19: An overview”, Journal of the Chinese Medical Association, 83(3), pp.217.
 
-Wu, Z., & McGoogan, J. M., (2020), “Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention, Jama”.
 
-Zhang, H., Yang, Z., Pawelek, K. A., & Liu, S., (2020), “Optimal control strategies for a two-group epidemic model with vaccination-resource constraints”, Applied Mathematics and Computation, 371, 124956.