رفتار مونوتونیک-پساسیکلی سرباره‌های فولاد اصلاح شده با ژئوگرید و خرده لاستیک به عنوان بالاست و زیربالاست خطوط راه‌آهن

نوع مقاله: مقاله پژوهشی

نویسنده

دانشیار، مرکز تحقیقات راه، مسکن و شهرسازی، تهران، ایران

چکیده

این مقاله رفتار مونوتونیک-پساسیکلی سرباره­های فولاد و اصلاح شده با ژئوگرید و خرده-لاستیک به عنوان بالاست و زیربالاست خطوط راه آهن و مقایسه آنها با بالاست آهکی را ارائه می‌دهد. نتایج شامل تنش تفاضلی حداکثر، مدول سکانتی() و مدول باربرداری-بارگذاری مجدد ()، زاویه اصطکاکو شکست دانه می‌باشد. مقادیر زاویه اصطکاک نمونه­های بالاست، زیربالاست و بالاست/زیربالاست سرباره‌ای مشابه مصالح معمول است. وجود لایه‌های ژئوگرید در بالاست سبب افزایش جزئی زاویه اصطکاک و ضریب پواسن می‌شود. وجود زیربالاستسرباره ای،مقدار فاکتور شکستبالاست، حداقل 2 برابر می‌کند. براساس شاخص کثیفی و شکست لایه­های بالاست سرباره‌ای تحت بارگذاری مونوتونیک-پساسیکلی نسبتاً تمیز می‌باشد. غرقاب شدن سبب افزایش شکست دانه­ها و کاهشمی شود. با توجه کاهش شدید مقادیر مدول مخلوط با خرده لاستیک بالاست، علیرغم تاثیر در کاهش شکست دانه­ها، استفاده از خرده لاستیک توصیه نمی‌شود. براساس نتایج می توان از مصالح سرباره به عنوان بالاست و زیربالاست به جای مصالح متداول استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Post-Cyclic Monotonic Behavior of Steel Slags Materials Modified By Geogrid and Tire Chips As Railway Ballast and Sub Ballast

نویسنده [English]

  • Ata Aghaei Araei
Associate Professor, Road, Housing & Urban Development, Tehran, Iran.
چکیده [English]

This paper presents post-cyclic-monotonic behavior of BOF and EAF steel slags as ballast and subballast layers with and without geogrid or tire chips, and comparing their behavior with limestone material. Tests were carried out by the large scale triaxial equipment. The confining pressures are chosen with respect to the stress levels in typical rail road track. The tested specimens were prepared by maximum dry density. The used square shape geogrid has aperture sizes of 25*30.5 mm and the depth of placement about 5cm above and middle of subballast. Size of tire chips was 12.7-25 mm and mixed 7% by weight, only in ballast layer. Maximum deviatoric stress, secant modulus, unloading-reloading modulus, friction angle and particle breakage are investigated. Results indicated that performing cyclic loading on ballast layer before the post cyclic-monotonic tests decreases the axial strain corresponding to maximum deviatoric stress. Post-cyclic-monotonic friction angle of ballast and subballast with and without geogrid ranges from 57-65°. The friction angles of the steel slag of ballast, subballast and ballast/subballast specimens are similar to traditional ballast materials. The values of and decrease as moisture of specimen increases. Average poison ratio for mention layers is about 0.3. Marsal breakage index (Bg) of the single layered steel slag ballast is almost two times of the limestone ballast. Presence of steel slag subballast increases Bg of the steel slag ballast to about 2 times. According to fouling and breakage indexes of steel slag ballast under post cyclic-monotonic loading is relative clean. Saturation of ballast specimen causes increase of particle breakage, therefore the drainage of ballast materials is necessary. Usage of tire chips is not recommended in ballast due to high rate of decreasing of modulus and friction angle. Results indicated that the steel slag particle may be used as natural aggregate in ballast and subballast layers.

کلیدواژه‌ها [English]

  • Slags
  • Ballast
  • Sub-ballast Post-cyclic-monotonic‌
  • Geogrid
  • Tire-chips
-American Railway Engineering and Maintenance of Way Association (AREMA), (2006), Manual of Railway Engineering.
 
-Aghaei Araei, A., (2018), “Assessment behavior of steel slag materials as railway ballast and sub ballast under dynamic and monotonic loading conditions”, Reseach Report, BHRC (In Persian).
 
-Indraratna, B. and Salim, W., (2001), “Shear strength and degradation characteristics of railway ballast”, Proc. 14th Southeast Asian Geotechnical Conference, Hong Kong, Vol.1, pp.521-526.
 
-­Indraratna, B., Ionescu, D. and Christie, H.D., (1998), “Shear behaviorof railway ballast based on large scale triaxial tests”, Journal of Geotechnical and Geoenvironmental Engineerin, ASCE, Vol.124, No.5, pp.439-449.
 
-NSA, www.nationalslagassoc.org.
 
-Rahmani ,I., Aghaei Araei, A., Attarchian, N., Salamat, A.S., Hasani, H., (2018) “Effect of saturation, particle size and steel slag origin on technical characteristic of engineering filling, Reseach Report, BHRC (In Persian).
 
-Rohrman, A.K., and C.L. Ho., (2018), “Labotatory evaluation of naturalyy abraded ballast behavior and properties”, Proceedings of the 2018 Joint Rail Conference, JRC2018- 6206, April 18-20, Pittsburgh, PA, USA.
 
Anderson, W.F. and Fair, P., (2008), “Behavior of railroad ballast under monotonic and cyclic loading”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.134, No.3, pp.316-327.
 
- Bian, X., Jiang, J., Jin ,W., Sun, D., Li, W. and Li X., (2016), “Cyclic and post cyclic triaxial testing of ballast and subballast”, Journal Mater. Civ. Eng., ASCE, 04016032, pp.11 .
 
-Marsal, R.J., (1973), “Mechanical properties of rockfill, embankment dam engineering”, Casagrande Vol. Wiley, New York,
pp.109-200.
 
-Ngo, N.T., Indraratna, I., Ferreira, F.B. and Rujikiatkamjorn, C., (2018), “Improved performance of geosynthetics enhanced ballast: laboratory and numerical studies”, Proceedings of the Institution of Civil Engineers, Ground Improvement, pp.1-21, Paper 170005, doi.org/10.1680/jgrim.17.00051.
 
- Selig, E. T. and Waters, J. M., (1994), “Track geotechnology and substructure management”, London: Thomas Telford.
 
- Petriaev, A., Konona, A. and Solovyov, V.  (2017), “Performance of ballast layer reinforced with geosynthetics in terms of heavy axle load operation”, Procedia Engineering, Vol.189, pp. 654- 659.
 
-Ngo, N.T., Indraratna, B., (2017), “Interface behavior of geogrid-reinforced sub-ballast: laboratory and discrete element modeling”, Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul,
pp.475- 481.
 
- Esmaeili, M., Aela, P. and Hosseini, A., (2017), “Experimental assessment of cyclic behavior of sand-fouled ballast mixed with tire derived aggregates”, Soil Dynamics and Earthquake Engineering, Vol.98, pp.1-11.
 
- Qi, Y., Indraratna, B., Heitor, A. and Vinod, J.S., (2018), “Effect of rubber crumbs on the cyclic behavior of steel furnace slag and coal wash mixtures”, Journal Geotech. Geoenviron. Eng., Vo.144, No.2, 04017107.
 
-Iran 301 code, (2005), “Railway superstructure general technical specification” (In Persian).
 
-Iran 394 code, (2006), “Instruction for design and supervising of high speed railroad pavement”, (In Persian).
-Aghaei Araei, A., Razeghi, H.R., Ghalandarzadeh, A., Tabatabaei, S.H., (2012), “Effects of loading rate and initial stress state on stress-strain behavior of rockfill materials under monotonic and cyclic loading conditions”, Scientia Iranica, Trans. A, Civil Eng., Vol.19, No.5, pp.1220-1235.
 
-ASTM C127-15, (2015), “Standard test method for relative density (specific gravity) and absorption of coarse aggregate”.
 
-ASTM D854-14, (2014), “Standard test method for specific gravity of soil solids by water pycnometer.
 
-ASTM D4253-14, (2014), “Standard test methods for maximum index density and unit weight of soils using a vibratory table”.
 
-Indraratna, B., Nimbalkar, S., Christie, D., Rujikiatkamjorn, C., and Vinod, J., (2010), “Field assessment of the performance of a ballasted rail track with and without geosynthetics”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.7, pp.907-917.
 
-Navaratnarajah, S.K. and Indraratna, B., (2018), “Use of rubber mats to improve the deformation and degradation behavior of rail ballast under cyclic loading”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.143, No.6, 0417015.
 
-Esmaeili, M. Rezaei, N., (2014), “Investigation of TDA effect on reduction of train induced vibration”, Journal of Transportation Research, Vol.11, No.1,
pp.1-15. (In Persian).
 
-Stark, T.D. and Wilk, S.T., (2018), “Review of size and loading conditions for large-scale triaxial testing, Railroad Ballast Testing and Properties”, ASTM STP1605, T. D. Stark, R. Szecsy, and R. H. Swan, Jr., Eds., ASTM International, West Conshohocken, PA, pp.152–162. http://dx.doi.org/10.1520/STP160520170025