ارزیابی اثرات افزودن نانورس به قیر لاستیکی فراترکیبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه پیام نور، تهران، ایران

2 استاد، دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران.

3 استادیار، دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران

4 دانش آموخته دکتری، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

با وجود این که یکی از موفق‌ترین اصلاحات انجام‌شده در قیرهای راهسازی، ترکیب قیر و پودر لاستیک با استفاده از فرآیند تر معمولی بوده است، مشکلات این نوع قیرهای لاستیکی از قبیل جدایی فاز و کارایی موجب شده است که فرآیندی به نام فراترکیبی جهت ترکیب مناسب‌تر قیر و پودر لاستیک معرفی شود. طی فرآیند فراترکیبی پودر لاستیک کاملا در قیر تجزیه می‌شود که بروز این پدیده می‌تواند منجر به کاهش گرانروی و ضعف عملکرد قیر لاستیکی فراترکیبی در دمای بالا نسبت به قیر لاستیکی معمولی گردد. جهت کاهش مشکلات قیر لاستیکی فراترکیبی، اصلاح آن یکی از ضروریات است. هدف اصلی این مطالعه، اصلاح قیر لاستیکی فراترکیبی با استفاده از 2 و 4 درصد نانورس است. در ابتدا  پس از آماده‌سازی هفت نمونه قیر، ساختار نانوکامپوزیت آماده‌شده با استفاده از آزمایش‌های پراش اشعه ایکس و میکروسکوپ الکترونی روبشی ارزیابی و تحلیل شد. سپس مشخصات پیرشدگی، رئولوژیکی و فیزیکی نانوکامپوزیت قیر لاستیکی فراترکیبی ارزیابی گردید. نتایج نشان داد که اصلاح قیر لاستیکی فراترکیبی با استفاده از نانورس منجر به کاهش حساسیت حرارتی و جداشدگی فاز آن گردید.  از طرف دیگر مشاهده شد که نانوکامپوزیت قیر لاستیکی فراترکیبی نسبت به قیر لاستیکی فراترکیبی اولیه، دارای گرانروی، نقطه نرمی و مقاومت پیرشدگی بالاتری است و همچنین عملکرد دمای بالای آن بهبود یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of The Effects of Adding Nanoclay To Terminal Blend Rubberised Asphalt

نویسندگان [English]

  • Mehdi Moazami Goodarzi 1
  • Freidoon Moghadas Nejad 2
  • Koorosh Naderi 3
  • Saeid Ahmadi 4
1 M.Sc., Grad., Civil Engineering Department, Payame Noor University, Tehran, Iran.
2 Professor, Civil and Environmental Engineering Department, Amirkabir University of Technology, Tehran, Iran.
3 Assistant Professor, Civil and Environmental Engineering Department, Amirkabir University of Technology, Tehran, Iran.
4 Ph.D. Grad., Civil Engineering Department, Semnan University, Semnan, Iran.
چکیده [English]

Although one of the successful modifications for pavement asphalts was the blending of asphalt and the recycled crumb rubber using conventional wet process, problems with asphalt rubber, such as phase separation and weakness in workability, led to the introduction of the terminal blend process (TB) for the proper blending of asphalt and rubber. During terminal blending process, rubber particles are completely digested in asphalt binder which could cause weakness at high temperature and a reduction in viscosity of TB rubberized asphalt compared to conventional asphalt rubber. In order to reduce the problems of TB rubberized asphalt, its modification is necessary. The main aim of this paper is to modify the TB rubberised asphalt by adding 2% and 4% nanoclay. First, after preparation of seven asphalt samples, the prepared nanocomposite structure was analysed using XRD and SEM tests. Then, the TB rubberised asphalt nanocomposite ageing, rheological, and physical specifications were investigated. The results showed that modification of TB rubberised asphalt by nanoclay reduced the temperature susceptibility and phase separation of it. On the other hand, it has been shown, compared to TB rubberised asphalt, TB rubberised asphalt nanocomposite has a high viscosity, softening point, and ageing resistance and also improved performance high temperatures.

کلیدواژه‌ها [English]

  • crumb rubber
  • modified Asphalt binder
  • TB rubberised asphalt
  • Rheological specification
  • Nanoclay
-Abdelrahman, M., and Carpenter, S., (1999), “Mechanism of interaction of asphalt cement with crumb rubber modifier”, Transportation Research Record: Journal of the Transportation Research Board (1661), pp.106-113.
-Abdullah, M. E., Ahmad Zamhari, K., Nayan, N., Hermadi, M., and Hainin, M. R., (2011), “Storage stability and physical properties of asphalt modified with nanoclay and warm asphalt additives”.
-Abdullah, M. E., Zamhari, K. A., Hainin, M. R., Oluwasola, E. A., Hassan, N. A., and Yusoff, N. I. M., (2016), “Engineering properties of asphalt binders containing nanoclay and chemical warm-mix asphalt additives”, Construction and Building Materials, 112, pp.232-240.
-Airey, G. D., (2003), “Rheological properties of styrene butadiene styrene polymer modified road bitumens”, Fuel, 82(14), pp.1709-1719.
-Ameri, M., Nowbakht, S., Molayem, M., and Aliha, M., (2016), “Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes”, Fatigue & fracture of engineering materials & structures, 39(7), pp.896-906.
-Bahia, H. U., and Davies, R., (1995), “Factors controlling the effect of crumb rubber on critical properties of asphalt binders (with discussion)”, Journal of the Association of Asphalt paving Technologists, 64.
-Bhagabati, P., Chaki, T. K., and Khastgir, D., (2015), “Panoptically exfoliated morphology of chlorinated polyethylene (CPE)/ethylene methacrylate copolymer (EMA)/layered silicate nanocomposites by novel in situ covalent modification using poly (ε-caprolactone). RSC Advances, 5(48), pp.38209-38222.
-Chen, J.-S., Lee, C.-T., and Lin, Y. Y., (2018), “Characterization of a Recycling Agent for Restoring Aged Bitumen”, Journal of Materials in Civil Engineering, 30(8), 05018003.
-Christensen, D. W., and Anderson, D. A., (1992), “Interpretation of dynamic mechanical test data for paving grade asphalt cements (with discussion)”, Journal of the Association of Asphalt Paving Technologists, 61.
-Elkashef, M. E., (2017), “Using soybean-derived materials to rejuvenate reclaimed asphalt pavement (RAP) binders and mixtures”.
-Galooyak, S. S., Dabir, B., Nazarbeygi, A. E., and Moeini, A., (2010), “Rheological properties and storage stability of bitumen/SBS/montmorillonite composites”, Construction and Building Materials, 24(3), pp.300-307.
-Ghaly, N., (2008), “Effect of sulfur on the storage stability of tire rubber modified asphalt, World Journal of Chemistry, 3(2), pp.42-50.
-Glover, C. J., Davison, R. R., Bullin, J. A., Estakhri, C. K., Williamson, S. A., Billiter, T. C., Chipps, J. F., Chun, J. S., Juristyarini, P., and Leicht, S. E., (2000), “A comprehensive laboratory and field study of high-cure crumb-rubber modified asphalt materials.
-Han, L., Zheng, M., Li, J., Li, Y., Zhu, Y., and Ma, Q., (2017), “Effect of nano silica and pretreated rubber on the properties of terminal blend crumb rubber modified asphalt”, Construction and Building Materials, 157, pp.277-291.
-Han, L., Zheng, M., and Wang, C., (2016), “Current status and development of terminal blend tyre rubber modified asphalt”, Construction and Building Materials, 128, pp.399-409.
-Hicks, R., Cheng, D., and Duffy, T., (2010), “Evaluation of terminal blend rubberized asphalt in paving applications (Report No. CP2C-2010-102TM)”. California State: California Pavement Preservation Center.
-Ibrahim, M. R., Katman, H. Y., Karim, M. R., Koting, S., and Mashaan, N. S., (2013), “A review on the effect of crumb rubber addition to the rheology of crumb rubber modified bitumen, Advances in Materials Science and Engineering.
-Jahromi, S. G., and Khodaii, A., (2009), “Effects of nanoclay on rheological properties of bitumen binder. Construction and Building Materials, 23(8), pp.2894-2904.
-Khodary, F., (2015), “Longer fatigue life for asphalt pavement using (SBS@ clay) nano composite”, International journal of current engineering and technology, 5(2).
-Khodary Moalla Hamed, F., (2010), “Evaluation of Fatigue Resistance for Modified Asphalt Concrete Mixtures Based on Dissipated Energy Concept”, Technische Universität.
-Lamontagne, J., Dumas, P., Mouillet, V., and Kister, J., (2001), “Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens”, Fuel, 80(4), pp.483-488.
-Liu, W., Xiao, X., and Yan, Y., (2015), “Properties and aging mechanism of layered double hydroxides/crumb rubber modified asphalt. Polymer Materials Science and Engineering, 31(2), pp.72-76.
-Marasteanu, M., and Anderson, D., (1999), “Improved model for bitumen rheological characterization”, Paper presented at the Eurobitume workshop on performance related properties for bituminous binders.
-Mturi, G. A., O'Connell, J., Zoorob, S. E., and De Beer, M., (2014), “A study of crumb rubber modified bitumen used in South Africa. Road Materials and Pavement Design, 15(4), pp.774-790.
-Nazari, H., Naderi, K., and Nejad, F. M., (2018), “Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Construction and Building Materials, 170, pp.591-602.
-PérezLepe, A., Martínez Boza, F., and Gallegos, C., (2007), “High temperature stability of different polymer modified bitumens: A rheological evaluation” Journal of applied polymer science, 103(2),
pp.1166-1174.
-Presti, D. L., (2013), “Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review”, Construction and Building Materials, 49, pp.863-881.
-Presti, D. L., Airey, G., and Partal, P., (2012), “Manufacturing terminal and field bitumen-tyre rubber blends: the importance of processing conditions. Procedia-Social and Behavioral Sciences, 53, pp.485-494.
-Read, J., and Whiteoak, D., (2003), “The shell bitumen handbook: Thomas Telford”.
-Safaei, F., (2017), “Characterization and Modeling of Asphalt Binder Fatigue”.
-Shu, X., and Huang, B., (2014), “Recycling of waste tire rubber in asphalt and portland cement concrete: An overview”, Construction and Building Materials, 67, pp.217-224.
-Stroup-Gardiner, M., (2013), “Recycled materials and byproducts in highway applications (Vol. 1): Transportation Research Board”.
-Sun, L., Zhu, H.-R., Xin, X.-T., Wang, H.Y., and Gu, W.-J. (2013). Preparation of nano-modified asphalt and its road performance evaluation. Zhongguo Gonglu Xuebao(China Journal of Highway and Transport), 26(1), pp.15-22.
-Tang, N., Lv, Q., Huang, W., Lin, P., and Yan, C., (2019), “Chemical and rheological evaluation of aging characteristics of terminal blend rubberized asphalt binder”, Construction and Building Materials, 205, pp.87-96.
-Van den Bergh, W., (2011), “The effect of ageing on the fatigue and healing properties of bituminous mortars.
-Walters, R. C., Fini, E. H., and Abu-Lebdeh, T., (2014), “Enhancing asphalt rheological behavior and aging susceptibility using
bio-char and nano-clay”, Am. J. Eng. Appl. Sci, 7(1), pp.66-76.
-Wang, Q., Li, S., Wu, X., Wang, S., and Ouyang, C., (2016), “Weather aging resistance of different rubber modified asphalts”, Construction and Building Materials, 106, pp.443-448.
-Williams, M. L., Landel, R. F., and Ferry, J. D., (1955), “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids”, Journal of the American Chemical society, 77(14),
pp.3701-3707.
-Xu, S., Li, L., Yu, J., Zhang, C., Zhou, J., and Sun, Y., (2015), “Investigation of the ultraviolet aging resistance of organic layered double hydroxides modified bitumen”, Construction and Building Materials, 96, pp.127-134.
-Yang, J., and Tighe, S., (2013), “A review of advances of nanotechnology in asphalt mixtures”, Procedia-Social and Behavioral Sciences, 96, pp.1269-1276.
-Yao, H., You, Z., Li, L., Lee, C. H., Wingard, D., Yap, Y. K., Shi, X., and Goh, S. W., (2012), “Rheological properties and chemical bonding of asphalt modified with nanosilica”, Journal of Materials in Civil Engineering, 25(11), pp.1619-1630.
-You, Z., Mills-Beale, J., Foley, J. M., Roy, S., Odegard, G. M., Dai, Q., and Goh, S. W., (2011), “Nanoclay-modified asphalt materials: Preparation and characterization”, Construction and Building Materials, 25(2), pp.1072-1078.
-Yusoff, N. I. M., Airey, G. D., and Hainin, M. R., (2010), Predictability of complex modulus using rheological models. Asian Journal of Scientific Research, 3(1), pp.18-30.
-Ze-qing, X. X.-y. Y., (2013), “Properties of Organic Montmorillonite/Crumb Rubber Compound Modified Asphalt [J], Journal of South China University of Technology (Natural Science Edition), 6, 017.
 
 
 
 
 
 
 
-Zhi-feng, Y., Mei-jiang, L., and Xu-dong, W. (2005), “The history and status quo of rubber powder used in road building”, Journal of Highway and Transportation Research and Development, 22(7), pp.19-22.
-Zhou, F., Newcomb, D., Gurganus, C., Banihashemrad, S., Park, E. S., Sakhaeifar, M., and Lytton, R. L. (2016), “Experimental design for field validation of laboratory tests to assess cracking resistance of asphalt mixtures”, NCHRP Project, pp.9-57.