ارزیابی حساسیت رطوبتی مخلوط آسفالتی نیمه‌گرم اصلاح‌شده با نانو TiO2 و گرانول لاستیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران

2 دانش آموخته دکتری، گروه راه و ترابری، دانشگاه صنعتی امیرکبیر، تهران، ایران

3 استاد، گروه راه و ترابری، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

حساسیت رطوبتی از جمله معایب روسازی نیمه‌گرم به شمار می‌رود که محققان در تحقیقات اخیر، برای رفع آن از افزودنی‌های مناسب از جمله مواد زائد استفاده می‌کنند. در این پژوهش نیز جهت کاهش مشکل مذکور، از مواد زائد دور ریختنی (گرانول لاستیکی) به همراه یک افزدنی نانو به نام تیتتانیوم دی‌اکسید (TiO2) استفاده شد تا دو جنبه زیست‌محیطی و عملکردی مخلوط آسفالتی نیمه‌گرم مورد بررسی قرار گیرد. برای این منظور نمونه‌هایی با 1، 3 و 5% وزنی از قیر 70/60 با نانو TiO2 اصلاح شده و فرآیند آن با کمک میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) کنترل گردید. همچنین مقادیر 0، 10 و %20 وزنی از مصالح سنگی ریزدانه سیلیسی (عبوری از الک 8 و مانده روی 50) با گرانول‌های لاستیکی به صورت ترکیبی با قیرهای خالص و اصلاح‌شده ساخته شدند. دمای تراکم و اختلاط قیرها با استفاده از آزمایش ویسکوزیته چرخشی (RV) در دو دمای 135 و 160 درجه‌ی سانتی‌گراد تعیین شد. جهت ارزیابی حساسیت رطوبتی نمونه‌ها، دو معیار نسبت مقاومت کششی غیرمستقیم (TSR) و نسبت مدول برجهندگی (RMR) طی سیکل‌های مختلف ذوب-یخبندان محاسبه شدند. نتایج این تحقیق نشان می‌دهد که افزودن نانو TiO2 به قیر، به تنهایی باعث بهبود 16% مقاومت در برابر رطوبت شده اما استفاده از گرانول‌های لاستیکی موجب کاهش این مقاومت به میزان 4% می‌شود. طبق این نتایج، جهت بهبود کارایی مخلوط حاوی گرانول لاستیکی از منظر دو شاخص TSR و RMR، می-توان برای جبران مافات از افزودنی نانو TiO2 بهره گرفت. از این‌رو، در بهینه‌ترین حالت، جهت استفاده از10% گرانول‌های لاستیکی، 3% از این نانو مواد لازم است. با درنظر گرفتن این رویکرد، هم جنبه اقتصادی-زیست‌محیطی و هم جنبه عملکردی مخلوط آسفالتی نیمه‌گرم مطلوب خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation the Moisture Susceptibility of Warm-Mix Asphalt Modified with Nano-TiO2 and Waste Rubber Granules

نویسندگان [English]

  • Alireza Mahpour 1
  • Mojtaba Khodadadi 2
  • Fereydoon Moghadas Nejadd 3
1 Assistant Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
2 Ph.D., Transportation Engineering Group, Department of Civil and Environment Engineering, Amirkabir University of Technology, Tehran, Iran.
3 Professor, Transportation Engineering Group, Department of Civil and Environment Engineering, Amirkabir University of Technology, Tehran, Iran.
چکیده [English]

Moisture damage is one of the disadvantages of warm mix asphalt. Recently, researchers use appropriate additives such as waste materials to address this issue. This study aims to overcome the moisture sensitivity of warm-mix asphalt (WMA) using additives such as nanomaterials as well as waste rubber granules. Bitumen (60/70) with a total weight of 1, 3, and 5% of Nano-TiO2 as well as 0, 10, and 20% of rubber granules by total weight of granite aggregate. The mixing and compaction temperature of bitumens were determined using a rotational viscosity test (RV). The optimal bitumen percentage was determined using the Marshall method. The results showed that the Nano-TiO2 has a small effect on this value, but the use of rubber granules has changed this percentage. To assess the moisture susceptibility of mixtures, indirect tensile strength test and resilient modulus test were used, and two criteria of indirect tensile strength ratio (TSR) and resilient modulus ratio (RMR) were calculated to compare the performance of the mixtures through the different freeze-thaw cycles. The results of experiments show that the addition of Nano-TiO2 to bitumen alone improves moisture resistance, but the use of rubber granules reduces this resistance. According to the results of this study, to improve the efficiency of the mixture containing rubber granules from the perspective of the TSR index, Nano-TiO2 should be used. For this purpose, the minimum required percentage of Nano-TiO2, to replace 10% of rubber granules, is 3%. From the RMR index point of view, all mixtures modified with Nano-TiO2, as well as the design containing 10% rubber granules, will pass the limit of Iranian regulation and will be acceptable in terms of moisture susceptibility.

کلیدواژه‌ها [English]

  • Warm-Mix Asphalt
  • Nano-Material
  • Rubber Granules
  • Rotational Viscosity Test
  • Different Freeze-Thaw Cycles
-Airey, G.D., Rahman, M.M. and Collop, A.C., (2003), “Absorption of bitumen into crumb rubber using the basket drainage method”, International Journal of Pavement Engineering, 4(2), pp.105-119.
-Akbari, A. and Modarres, A., (2017), “Effect of clay and lime nano-additives on the freeze–thaw durability of hot mix asphalt”, Road Materials and Pavement Design, 18(3), pp.646-669.
-Ayazi, M.J., Moniri, A. and Barghabany, P., (2017), “Moisture susceptibility of warm mixed-reclaimed asphalt pavement containing Sasobit and Zycotherm additives”, Petroleum Science and Technology, 35(9), pp.890-895.
-Azarhoosh, A., Moghaddas Nejad, F. and Khodaii, A., (2018), “Evaluation of the effect of nano-TiO2 on the adhesion between aggregate and asphalt binder in hot mix asphalt”, European Journal of Environmental and Civil Engineering, 22(8), pp.946-961.
-Cetin, A., )2013(, “Effects of crumb rubber size and concentration on performance of porous asphalt mixtures”, International Journal of Polymer Science.
-Cheng, D., Little, D.N., Lytton, R.L. and Holste, J.C., (2002), “Surface energy measurement of asphalt and its application to predicting fatigue and healing in asphalt mixtures”, Transportation Research Record, 1810(1), pp.44-53.
-Chiu, C.T. and Lu, L.C., (2007),
“A laboratory study on stone matrix asphalt using ground tire rubber”, Construction and Building Materials, 21(5), pp.1027-1033.
-D3513, (2003), “Gradation specification for dense asphalt mixtures”, West Conshohocken, PA: ASTM International.
-EAPA European Asphalt Pavement Association, (2010), “The Use of Warm Mix Asphalt”, EAPA position paper, pp.1-13.
-Filho, P.G.T.M., Rodrigues dos Santos, A.T., Lucena, L.C.D.F.L. and de Sousa Neto, V.F., (2019), “Rheological evaluation of asphalt binder 50/70 incorporated with titanium dioxide nanoparticles”, Journal of Materials in Civil Engineering, 31(10), p.04019235.
-Fontes, L.P., Trichês, G., Pais, J.C. and Pereira, P.A., (2010), “Evaluating permanent deformation in asphalt rubber mixtures. Construction and Building Materials, 24(7), pp.1193-1200.
-Ghaffarpour Jahromi, S. and Khodaii, A., )2009(, “Identification effect of nanoclay on engineering properties of asphalt mixtures”, AUT Journal of Modeling and Simulation, 41(1), pp.49-57.
-Gong, Y., Bi, H., Tian, Z. and Tan, G., 2018. Pavement performance investigation of nano-TiO2/CaCO3 and basalt fiber composite modified asphalt mixture under freeze‒thaw cycles, Applied Sciences, 8(12), p.2581.
-Gowda, G.V., Hall, K.D. and Elliott, R.P., (1996), “Arkansas experience with crumb rubber modified mixes using Marshall and strategic highway research program Level I design methods”, Transportation research record, 1530(1), pp.25-33.
-Günay, T. and Ahmedzade, P., (2020), “Physical and rheological properties of nano-TiO2 and nanocomposite modified bitumens”, Construction and Building Materials, 243, p.118208.
-Hamedi, G.H., Nejad, F.M. and Oveisi, K., (2016), “Estimating the moisture damage of asphalt mixture modified with nano zinc oxide”, Materials and Structures, 49, pp.1165-1174.
-Hassan, N.A., Airey, G.D., Yusoff, N.I.M., Hainin, M.R., Putrajaya, R., Abdullah, M.E. and Aziz, M.M.A., (2015), “Microstructural characterization of dry mixed rubberized asphalt mixtures”, Construction and Building Materials, 82, pp.173-183.
-Hernández-Olivares, F., Witoszek-Schultz, B., Alonso-Fernández, M. and Benito-Moro, C., (2009), “Rubber-modified hot-mix asphalt pavement by dry process”, International Journal of Pavement Engineering, 10(4), pp.277-288.
-Hu, D., Pei, J., Li, R., Zhang, J., Jia, Y. and Fan, Z., (2020), “Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation”, Frontiers of Structural and Civil Engineering, 14, pp.109-122.
-Kocak, S. and Kutay, M.E., (2020), “Fatigue performance assessment of recycled tire rubber modified asphalt mixtures using viscoelastic continuum damage analysis and AASHTO Ware pavement ME design, Construction and Building Materials, 248, p.118658.
-Kumar, A., Choudhary, R. and Kumar, A., (2021), “Characterization of asphalt binder modified with ethylene–propylene–diene–monomer (EPDM) rubber waste from automobile industry”, Road Materials and Pavement Design, 22(9), pp.2044-2068.
-Lee, S.J., Akisetty, C.K. and Amirkhanian, S.N., (2008), “The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements”, Construction and Building Materials, 22(7), pp.1368-1376.
-Lottman, R.P., (2001), “Predicting moisture induced damage to asphaltic concrete”, report No.192, transportation research board, and national research Council, Washington DC, NCHRP.
-Mahpour, A., Alipour, S., Khodadadi, M., Khodaii, A. and Absi, J., (2023), “Leaching and mechanical performance of rubberized warm mix asphalt modified through the chemical treatment of hazardous waste materials”, Construction and Building Materials, 366, p.130184.
-Mahpour, A., Khodadadi, M., Shahraki, M. and Moghadas Nejad, F., (2022), “Evaluation of Moisture Durability of Modified Asphalt Mixture with Nano-Titanium Dioxide Using Surface Free Energy Method”,  Amirkabir Journal of Civil Engineering, 54(8), pp.2831-2850.
-Mohajerani, A., Burnett, L., Smith, J.V., Markovski, S., Rodwell, G., Rahman, M.T., Kurmus, H., Mirzababaei, M., Arulrajah, A., Horpibulsuk, S. and Maghool, F., (2020), “Recycling waste rubber tyres in construction materials and associated environmental considerations: A review”, Resources, Conservation and Recycling, 155, p.104679.
-Pinheiro, J. and Soares, J., (2003), “The effect of crumb rubber and binder-rubber interaction time on the mechanical properties of asphalt-rubber mixtures (Dry process). In Proceedings asphalt rubber 2003 conference, Brasilia, Brazil, pp. 707-718.
-Plati, C., Cliatt, B. and Loizos, A., (2020), “Preliminary study on the mechanical properties of an asphalt mixture containing RAR modifiers. In Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE) 5­, Springer International Publishing, pp. 204-213.
-Poovaneshvaran, S., Hasan, M.R.M. and Jaya, R.P., (2020), “Impacts of recycled crumb rubber powder and natural rubber latex on the modified asphalt rheological behavior”, bonding, and resistance to shear, Construction and Building Materials, 234, p.117357.
 
 
-Shafabakhsh, G.H., Mirabdolazimi, S.M. and Sadeghnejad, M., (2014), “Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures”, Construction and building materials, 54, pp.566-571.
-Stroup-Gardiner, M., Chadbourn, B. and Newcomb, D.E., (1996), “Babbitt, Minnesota: case study of pretreated crumb rubber modified asphalt concrete”, Transportation Research Record, 1530(1), pp.34-42.
-Subrata K.D, (2004), “Evaluation of asphalt aggregate bond and strippng potential”,
A thesis in civil engineering, Texas tech university, Texas, USA.
-Tajdini, M., Arjroodi, A.R. and Mahpour, A.R., (2019), “Investigation of Parameters Interface of Asphaltic Concrete and Sand”, Journal of Transportation Research, 16(2), pp.189-198.
-Vaitkus, A., Čygas, D., Laurinavičius, A. and Perveneckas, Z., (2009), “Analysis and evaluation of possibilities for the use of warm mix asphalt in Lithuania”, The Baltic Journal of Road and Bridge Engineering, 4(2), pp.80-86.
-Wang, Q.Z., Wang, N.N., Tseng, M.L., Huang, Y.M. and Li, N.L., (2020), “Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China”, Journal of cleaner production, 249, p.119411.
-Xie, X., Hui, T., Luo, Y., Li, H., Li, G. and Wang, Z., (2020), “Research on the properties of low temperature and anti-UV of asphalt with nano-ZnO/nano-TiO2/copolymer SBS composite modified in high-altitude areas”, Advances in Materials Science and Engineering, pp.1-15.
-You, Z. and Goh, S.W., (2008), “Laboratory evaluation of warm mix asphalt: a preliminary study”, International Journal of Pavement Research and Technology”, 1(1), pp.34-40.
-Zaumanis, M., (2010), “Warm mix asphalt Investigation”, PhD Thesis, Riga Technical University, Kgs. Lyngby, Denmark.