بررسی تاثیر پیرشدگی قیر بر مقاومت به شن زدگی و ترک خوردگی مخلوطهای آسفالتی ساخته شده با مصالح سنگی سیلیسی و آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار، گروه مهندسی عمران، دانشگاه زنجان، زنجان، ایران

3 استادیار، گروه مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

در این پژوهش تاثیر شرایط مختلف پیرشدگی بر مقاومت به شن زدگی و مقاومت به ترک خوردگی مخلوط آسفالتی ساخته شده با دو نوع مصالح سنگی مختلف شامل مصالح سنگی آهکی و سیلیسی مطالعه گردیده است. نمونه‌های آسفالتی ساخته شده با مصالح سنگی آهکی و سیلیسی، تحت شرایط پیرشدگی کوتاه مدت، بلند مدت 5 روزه و بلند مدت 7 روزه قرار گرفته و آزمایش افت وزنی کانتابرو و خمش نیمدایره ای در دمای محیط بر روی آنها انجام شده و نتایج با یکدیگر و حالت کنترل بدون اعمال پیرشدگی مقایسه گردیده‌اند. نتایج نشان می‌دهد مخلوطهای ساخته شده با مصالح سنگی آهکی مقاومت به شن‌زدگی و مقاومت به ترک خوردگی بیشتری از مخلوط ساخته شده با مصالح سنگی سیلیسی دارند. این نتایج ناشی از بافت زبرتر سنگدانه‌های آهکی نسبت به سیلیسی و داشتن ترکیبات شیمیایی اکسید منیزیم و اکسید کلسیم بیشتر آنها می‌باشد. همچنین، نتایج نشان می‌دهند که پیرشدگی باعث کاهش مقاومت به شن‌زدگی، انرژی شکست، چقرمگی‌ شکست، شکل‌پذیری و بار بحرانی قابل تحمل تا شکست در آزمایش خمش نیمدایره‌ای می‌گردد. میزان تاثیر پیرشدگی بر این ویژگی‌ها به جنس سنگدانه‌ها و نوع خصوصیت عملکردی بستگی دارد. از نظر مقاومت به شن‌زدگی پیرشدگی تاثیر بیشتری بر روی مخلوط ساخته شده با مصالح آهکی دارد، ولی خصوصیات شکست شامل انرژی شکست، بار بحرانی و چقرمگی شکست در مخلوطهای ساخته شده با مصالح سیلیسی تاثیر بیشتری از پیر شدگی می‌گیرند

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Asphalt Ageing on the Mechanical Properties of Asphalt Mixtures Made by Limestone and Siliceous Aggregates

نویسندگان [English]

  • Seyed Amir Hossein Beheshti 1
  • Hassan Taherkhani, 2
  • Parham Hayati 3
  • Alireza Sarkar 3
1 Ph.D. Student, Civil Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Associate Professor, Civil Engineering Department, University of Zanjan, Zanjan, Iran.
3 Assistant Professor, Civil Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

In this research the effects of different aging conditions on the raveling and cracking resistance of asphalt concrete made by two types of aggregates, namely limestone and siliceous source have been investigated. Asphalt samples made by siliceous and limestone aggregates were made and were subjected to short-term and 5 and 7-day long-term aging conditions. After that, they were tested using Cantabro mass loss and semi-circular bending test at ambient temperature. Results reveal that the mixture made by limestone aggregates has more raveling and cracking resistance than the mixture made by siliceous aggregates. These results were found to be due to rougher texture and more angularity of limestone particles and also having more MgO and CaO content in their chemical compositions. Results also reveal that aging results in reduction of raveling resistance, fracture energy, fracture toughness, ductility and critical load sustained before fracture in semi-circular bending test. The effect of aging on these properties was found to be dependent on the type of aggregates and the considered property. In terms of raveling resistance, the aging is more effective on the mixture made by limestone aggregates; however, the fracture properties and cracking resistance of the mixture made by siliceous aggregates are more affected by aging than the mixture made by limestone aggregates.
.

کلیدواژه‌ها [English]

  • Asphalt Concrete
  • Aging
  • Limestone Aggregates
  • Siliceous Aggregates
  • Raveling
  • Semi-Circular Bending
- Abduljabbar, N., Al-Busaltan, S., Dulaimi, A., & Aljawad, O. (2020). Evaluating of Aging Behavior of Thin Asphalt Overlay Modified With Sustainable Materials. International Journal on Pavement Engineering & Asphalt Technology, 20, 162-173.
-Abouelsaad, A., & White, G. (2021). Review of asphalt mixture ravelling mechanisms, causes and testing. International Journal of Pavement Research and Technology, 1-15.
-Aliha, M. R. M., Fazaeli, H., Aghajani, S., and Nejad, F. M., (2015a).­ Effect of Temperature and Air Void on Mixed Mode 854 Journal of Testing and Evaluation Fracture Toughness of Modified Asphalt Mixtures. Construction and Building Materials, Vol. 95, 545–555.
-Aliha, M. R. M., Behbahani, H., Fazaeli, H., & Rezaifar, M. H. (2015b). Experimental study on mode I fracture toughness of different asphalt mixtures. Scientia Iranica, 22(1), 120-130.
-Alwardany, M. D., Rad, F. Y., Castorena, C. and Kim, Y. R. (2017). Evaluation of asphalt mixture laboratory long-term ageing methods for performance testing and prediction, Road Materials and Pavement Design, Vol. 18, No. 1, 28–61.
-Azimi Alamdary, Y., Singh, S., & Baaj, H. (2019). Laboratory simulation of the impact of solar radiation and moisture on long-term age conditioning of asphalt mixes. Road Materials and Pavement Design, 0(0), 1–12.
doi:10.1080/14680629.2019.1587496
-Azimi Alamdary, Y., Singh, S., & Baaj, H. (2021). Effect of aggregates containing iron sulphide on asphalt ageing. Road Materials and Pavement Design, 22(3), 623-638.
Bell, C. A.; Kliewer, J. E. and  Sosnovke, D. A. (1995). Investigation of the relationship between field performance and laboratory aging properties of asphalt mixtures. in Engineering Properties of Asphalt Mixtures and the Relationship with 7eir Performance, G. A. Huber and D. S. Decker, Eds., ASTM STP 1265, American Society for Testing and Materials, Philadelphia, PA, USA.
-Bell, C. A., Wieder, A. J. and Fellin, M. J. (1994) .Laboratory aging of asphalt-aggregate mixtures: field validation. Research Report SHRP-A-390, Oregon State University, Corvallis, OR, USA.
-Bessa, I. S., Branco, V. T., Soares, J. B., Neto, J. A. N. (2015). Aggregate shape properties
and their influence on the behavior of hot-mix asphalt. Journal of. Materials in Civil Engineering,doi.org/10.1061/(asce)mt.1943-5533.0001181.
-Brown, S. F. and Scholz, T. V. (2000). Development of laboratory protocols for the aging of asphalt mixtures. in Proceedings of 2nd Eurasphalt and Eurobitume Congress, Vol. 1, Barcelona, Spain, September, 83–90,
-­Cao, W., Mohammad, L. N., Elseifi, M., Cooper III, S. B., & Saadeh, S. (2018). Fatigue performance prediction of asphalt pavement based on semicircular bending test at intermediate temperature. Journal of Materials in Civil Engineering, 30(9), 04018219.
-Chen, G.M. and Tan, Y.Q. (2007). Asphalt mixture performance research
based on coarse aggregate surface texture. Journal of Highway and Transportation Research and Development, 24 (2), 8–12.
-Christensen, W. D., Bonaquist, R., and Jack, D. P. (2000). Evaluation of triaxial strength as a simple test for asphalt concrete rut resistance. Final Rep., Pennsylvania Dept. of Transportation.
-Cox, B. C., Smith, B. T., Howard, I. L., & James, R. S. (2017). State of knowledge for Cantabro testing of dense graded asphalt. Journal of Materials in Civil Engineering, 29(10), 04017174.
-Curtis, G.W., (1993). Investigation of asphalt–aggregate interactions inasphalt pavements. Abstracts of Papers of the American Chemical Society, 204 (34), 1292–1298.
-Das, B. P., & Siddagangaiah, A. K. (2022). Identification of parameter to assess cracking resistance of asphalt mixtures subjected to aging and moisture conditioning. Journal of Traffic and Transportation Engineering (English Edition), 9(2), 293-304.
-Doyle, J., & Howard, I. (2016). Characterization of dense-graded asphalt with the Cantabro test. Journal of Testing and Evaluation, 44(1), 77-88.
-Du, Z., & Zhu, X. (2019). Molecular dynamics simulation to investigate the adhesion and diffusion of asphalt binder on aggregate surfaces. Transportation Research Record, 2673(4), 500-512.
-Ensley, E.K., (1973). A study of asphalt aggregate interactions and asphalt molecular interactions by microcalorimetric methods: postulatedinteraction mechanism. Journal of the Institute of Petroleum, 59, 279–289.
-Ensley, E.K. and Seholz, H.A., (1972). A study of asphalt–aggregateinteractions by heat of immersion. Journal of the Institute of Petroleum, 58, 95–101.
-Gao, J., Wang, H., Bu, Y., You, Z., Hasan, M.R.M., Irfan, M., (2018). Effects of coarse aggregate angularity on the microstructure of asphalt mixture. Constr. Build. Mater, doi.org/10.1016/j.conbuildmat.2018.06.170.
-Hashimoto, M., et al., (2011) Effect of mineral filler characteristicson asphalt mastic and mixture rutting potential. Transportation Research Record. Journal of the Transportation Research Board, 2208, 33–39.
-Hesp, S. A. M., & Shurvell, H. F. (2010). X-ray fluorescence detection of waste engine oil residue in asphalt and its effect on cracking in service. International Journal of Pavement Engineering, 11(6), 541–553. doi:10.1080/10298436.2010.488729.
-Hofman, R., Oosterbaan, B., Erkens, S., and Kooij, J., (2003). Semi-Circular Bending Test to Assess the Resistance Against Crack Growth. Proceedings of the 6th RILEM Conference on Performance Testing and Evaluation of Bituminous Materials, Zurich, Switzerland, April 16, Springer, New York, 257–263.
-Houston, W. N., Mirza, M. W., Zapata, C. E. and Raghavendra, S. (2005). Environmental effects in pavement mix and structural design systems. Part 1 of Contractor’s Final Report for NCHRP Project 9-23, Arizona State University, Phoenix, AZ, USA.
-Kaseer, F. Yin, F. Arambula-Mercado, E. Martin, A. E. Daniel, J. S. Salari, S. (2018). Development of an index to evaluate the cracking potential of asphalt mixtures using the semi-circular bending test, Construction and Building Materials, Vol. 167, 286–298.
-Kavussi, A.; Qazizadeh, M. J. (2014). Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging, Construction and Building Materials (72), 158-166.
-Kim, Y.R., Little, D.N. and Song, I., (2003). Effect of mineral fillers on fatigue resistance and fundamental material characteristics: mechanistic evaluation. Transportation Research Record: Journal of the Transportation
Research Board
, 1832, 1–8.
-Lesueur, D. and Little, D.N., (1998). Effect of hydrated lime on rheology, fracture, and aging of bitumen. Transportation Research Record, 1661, 93–105.
-Li, P., Yi, K., Yu, H., Xiong, J., & Xu, R. (2021). Effect of aggregate properties on long-term skid resistance of asphalt mixture. Journal of Materials in Civil Engineering, 33(1), 04020413.
-Lim I, Johnston I, Choi S. (1993). Stress intensity factors for semi-circular specimens under three-point bending. Engage Fact Mach, 44(3), 363–82.
-Liu, Y. and You, Z. (2011). Discrete-element modeling: impacts of aggregate sphericity, orientation, and angularity on creep stiffness of idealized asphalt mixtures. Journal of Materials in Civil Engineering, 137, 294–303.
-López-Montero, T., & Miró, R. (2016). Differences in cracking resistance of asphalt mixtures due to ageing and moisture damage. Construction and Building Materials. 112, 299-306.
-Majidifard, H., Jahangiri, B., Rath, P., & Buttlar, W. G. (2021). Development of a balanced cracking index for asphalt mixtures tested in semi-circular bending with load-LLD measurements. Measurement, 173, 108658.
-Lu, D. X., Nguyen, N. H., Saleh, M., & Bui, H. H. (2021). Experimental and numerical investigations of non-standardised semi-circular bending test for asphalt concrete mixtures. International Journal of Pavement Engineering, 22(8), 960-972.
-Mouton, Yves. (2006). Organic materials in civil engineering. UK: ISTE.
 doi:10.1002/9780470612316.
-Petersen, J. C. (2009). A review of the fundamentals of asphalt oxidation: Chemical, physicochemical, physical property, and durability relationships .Washington, DC, USA: Transportation Research Board. ISSN 0097-8515.
-Rahmani, E.; Darabi, E. M.; Little, D. N.and Masad, E. A. (2017). Constitutive modeling of coupled aging-viscoelastic response of asphalt concrete. Construction and Building Materials, Vol. 131, 1–15.
-Rajib, A. I., Shariati, S., & Fini, E. H. (2021). The effect of progressive aging on the bond strength of bitumen to siliceous stones. Applied Surface Science, 550, 149324.
- Safazadeh, F., Romero, P., Mohammad Asib, A. S., & VanFrank, K. (2022). Methods to evaluate intermediate temperature properties of asphalt mixtures Road Materials and Pavement Design,by the semi-circular bending (SCB) test. 23(7), 1694-1706.
-Sirin, O., Paul, D. K., & Kassem, E. (2018). State of the art study on aging of asphalt mixtures and use of antioxidant additives. Advances in Civil Engineering.
-Veeraragavan, R. K. (2016). An investigation of the performance of hot mix asphalt (HMA) binder course materials with high percentage of reclaimed asphalt pavement (RAP) and rejuvenators. A report submitted to the Faculty of the Worcester Polytechnic Institute, MA, US.
-Von Quintus, H., Scherocman, J., Kennedy, T. and Hughes, C. S. (1988). Asphalt aggregate mixture analysis system. Final Report to NCHRP 09–06(1), National Research Council, Washington, DC, USA.
-Wang, H., Zhang, C., Li, L., You, Z., & Diab, A. (2016). Characterization of low temperature crack resistance of crumb rubber modified asphalt mixtures using semi-circular bending tests.
-Xiao, Q.C., Qian, C.X. and Xie, J.G., (2004). Experimental research on modification of asphalt concrete performance and asphalt-aggregate interface by coupling agent. Journal of Southeast University (Natural Science Edition), 34 (4), 485–489.
-Yan, C., Huang, W., Zheng, M., Zhang, Y., & Lin, P. (2021). Influence of ageing on high content polymer modified asphalt mixture stripping, cracking and rutting performances. Road Materials and Pavement Design, 22(8), 1824-1841.
-Yan, X.L. and Liang, C.Y., (2001). Study of the shear adhesiveness between bitumen and rock. China Journal of Highway and Transport, 14 (4), 25–27.
-You, Z. and Dai, Q., (2007a). Review of advances in micromechanical modeling of aggregate–aggregate interactions in asphalt mixtures. Canadian Journal of Civil Engineering, 34 (2), 239–252.
-You, Z. and Dai, Q., (2007b). Dynamic complex modulus predictions of hot-mix asphalt using a micromechanical-based finite element model. Canadian Journal of Civil Engineering, 34 (12), 1519–1528.