شناسایی پدیده هیستریس مبتنی بر مدل نامتقارن رفتاری راننده )قبل و بعد از آشفتگی جریان ترافیک(

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده فنی مهندسی، دانشگاه بین‌المللی امام خمینی قزوین، قزوین، ایران

2 دانشجوی دکترا، دانشگاه بین‌المللی امام خمینی قزوین قزوین، ایران

3 استاد، دانشکده فنی مهندسی، دانشگاه تربیت مدرس، تهران، ایران

4 دانش آموخته کارشناسی ارشد، دانشگاه آزاد اسلامی شوشتر، شوشتر، ایران

چکیده

شناسایی ترافیک حرکت توقف  در آزادراه‌ها که منجر به آشفتگی جریان ترافیک می‌شود تاکنون نه تنها به دلیل کمبود داده‌های عبوری وسایل نقلیه و ناکافی بودن سنسورهای جمع کننده داده‌ها مبهم می‌باشد بلکه همچنین درک ناچیزی به منظور اعتبارسنجی آشفتگی‌ها در مدل‌های جریان ترافیک وجود دارد که معمولاً نتیجه‌ای از روابط ریاضی نسبت به رفتار رانندگان می‌باشد. در این مقاله به منظور آنالیز ترافیک حرکت توقف مدل تعقیب خودرویی مبتنی بر داده‌های عبوری تجربی NGSIM ارائه می‌گردد که نه تنها قابلیت ایجاد نمودن انتشار واقعی و تشکیل بالقوه امواج حرکت توقف را در ازدحام ترافیکی دارد، بلکه همچنین مبتنی بر مدل نامتقارن رفتاری، می‌توان پدیده هیسترسیس ترافیکی را آنالیز نمود که در آشفتگی ترافیکی از دیدگاه رفتاری راننده پدیدار می‌گردد. آنالیز آماری پارامترهای مدل نامتقارن رفتاری آشکار می‌نماید که همبستگی قابل‌توجهی بین رفتار راننده قبل، بعد و در زمان آشفتگی وجود دارد که در صورت آنالیز آشفتگی در سطح جزئی‌نگر، این همبستگی باید در نظر گرفته شود و همچنین نتایج آنالیز پدیده هیسترسیس مبتنی بر مدل نامتقارن رفتاری نشان می‌دهد که پیدایش و نوع الگوی پدیده هیسترسیس ارتباط نزدیکی با رفتار راننده در موقعیت حرکت راننده در آشفتگی ترافیکی دارد به‌عبارت‌دیگر، در زمانی که راننده با آشفتگی‌های ترافیکی مواجه می‌شوند و در زمانی که موج کاهش شتاب آغاز می‌شود، پدیده هیسترسیس ترافیکی به گروه‌بندی
و الگوهای رفتاری راننده و سناریو پاسخ‌های رفتاری راننده در دوره تشکیل آشفتگی ترافیکی مرتبط می‌گردد.

 

کلیدواژه‌ها


عنوان مقاله [English]

Identifying Traffic Hysteresis Based on Driver Asymmetric Behavior Model: Before and After Traffic Oscillation

نویسندگان [English]

  • A Abdi 1
  • A Salehikalam 2
  • M Safazadeh 3
  • A.R Aminrad 4
چکیده [English]

Identifying Stop and go traffic results in traffic oscillation on freeway. because of scarce vehicle trajectories data and  aggregated sensor data not only identifying stop and go traffic still limits but also our understanding of this type of the oscillations in congested traffic is still limited. In this paper, analyzing stop and go traffic based on trajectory data of NGSIM presents car following model that not only is able to reproduce the spontaneous formation and ensuing propagation of stop and-go waves in congested traffic, but also based on a behavioral car following model studies microscopic traffic hysteresis from a behavioral perspective. The statistical analysis of the model’s parameters reveals that there is a strong correlation between driver behaviors before and during the oscillation, and that this correlation should not be ignored if one is interested in microscopic output. Also, statistical results of traffic hysteresis based on driver asymmetric behavior reveals that generation and type of traffic hysteresis patterns depending on driver behavior of position along the oscillation. In other word, when driver meets traffic oscillation and deceleration wave starts, traffic hysteresis depends on driver behavioral of patterns and group and scenarios inside the different stages of an oscillation generation.
 
 
 

کلیدواژه‌ها [English]

  • Traffic Oscillations
  • Traffic Hysteresis
  • Aggressive Driver
  • Timid Driver
  • Newell Driver

-Ahn, S., Cassidy, M.J., (2007), Freeway traffic oscillations and vehicle lane-changing maneuvers. The 17th International Symposium on Transportation and Traffic flow Theory,
pp.691–710.

-Ahn, S., Cassidy, M.J., Laval, J., (2004), Verification of a simplified car-following theory. Transportation Research Part B 38 (5), pp.431–440.

-Ahn, S., (2005), Growth of Oscillations in Queued Traffic. Ph.D. Thesis, Depart. of Civil Engineering, University of California, Berkeley.

-Ahn, S., S. Vadlamani, J. A. Laval and D. Chen. (2011), A Method to Account for Non-Steady Conditions in Measuring Traffic Hysteresis. Submitted.

-Bilbao-Ubillos, J., (2008), the costs of urban congestion: estimation of welfare losses arising from congestion on cross-town link roads. Transportation Research Part A 42 (8),
 pp.1098–1108.

-Chen, D.; Laval, J. A.; Ahn, S.; Zheng, Z. (2012), Microscopic Traffic Hysteresis in Traffic Oscillations: A Behavioral Perspective. Transportation Research Part B 46(10):
pp.1440-1453.

- Chen, D.; Laval, J. A.; Zheng, Z; and Ahn, S. (2012), Traffic Oscillations: A Behavioral
Car-Following Model. Transportation Research Part B, 46(6): pp.744-761.

-Edie, L.C., 1961. Car-following and steady-state theory for non-congested traffic. Operations Research 9 (1), pp.66–76.

Koshi, M., Kuwahara, M., Akahane, H., (1992), Capacity of sags and tunnels in japanese motorways. ITE Journal (May issue), pp.17–22.

Laval, J., (2006), stochastic processes of moving bottlenecks: approximate formulas for highway capacity. Transportation Research Record 1988 (1), pp.86–91.

-Laval, J., Chen, D., Amer, K., Guin, A., Ahn, S., (2009), Evolution of oscillations in congested traffic. Transportation Research Record 2124 (1), pp.194–202.

-Laval, J.A., (2005), Linking synchronized flow and kinematic wave theory. In: Schadschneider, A., Poschel, T., Kuhne, R., Schreckenberg, M., Wolf, D. (Eds.), Traffic and Granular Flow ’05. Springer, pp. 521–526.

-Laval, J.A., Daganzo, C.F., (2006), Lane-changing in traffic streams. Transportation Research Part B 40 (3), pp.251–264.

-Laval, J. A. Hysteresis in Traffic Flow Revisited: An Improved Measurement Method. Transportation Research Part B: Methodological, Vol. In Press, Corrected Proof, 2010, pp.135-137.

-Laval, J.A.; Leclercq, L. 2010. A Mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic. Philosophical Transactions of The Royal Society a 368(1928): pp.4519-4541.

-Mauch, M., Cassidy, M.J., (2002), Freeway traffic oscillations: observations and predictions. The 15th International Symposium on Transportation and Traffic flow Theory, pp.653–673.

-Newell, G.F., (1962), Theories of instability in dense highway traffic. Journal of the Operations Research Society of Japan 5, pp.9–54

Newell, G.F., (2002), a simplified car-following theory: a lower order model, Transportation Research Part B 36: pp.196-205.

 -Treiber, M., Kesting, A., 2011. Evidence of convective instability in congested traffic flow: a systematic empirical and theoretical investigation. The 19th International Symposium on Transportation and Traffic flow Theory, pp.698–716.

-Treiterer, J., Myers, J.A., (1974), The hysteresis phenomenon in traffic flow. In: Buckley D.J. (Ed.), Proceedings of the 6th Symposium on Transportation and Traffic Flow Theory, pp. 213–219.

-Wilson, R.E., 2008. Mechanisms for spatio-temporal pattern formation in highway traffic    models. Philosophical Transactions of the Royal Society A 366 (1872), pp.2017–2032.

-Wilson, R.E., Ward, J.A., 2011. Car-following models: fifty years of linear stability analysis – a mathematical perspective. Transportation Planning and Technology 34 (1), pp. 3–18.

-Yeo, H., Skabardonis, A., (2009), Understanding stop-and-go traffic in view of asymmetric traffic theory. In: Lam, W.H.K., Wong, S.C., Lo, H.K. (Eds.),Proceedings of the 18th Symposium on Transportation and Traffic Flow Theory,
pp. 99–115.

-Zheng, Z., Ahn, S., Monsere, C.M., (2010), Impact of traffic oscillations on freeway crash ccurrences. Accident Analysis and Prevention 42 (2), 626–636.

-Zheng, Z., Ahn, S., Chen, D., Laval, J., (2011), Applications of wavelet transform for analysis of freeway traffic: bottlenecks, transient traffic, and traffic  oscillations. Transportation Research Part B 45 (2), pp.372–384.

-Zheng, Z., Ahn, S., Chen, D., Laval, J.A., (2011), Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet transform. The 19th International Symposium on Transportation and Traffic flow Theory,
pp.717–731.

-Zhang, H. M. A mathematical theory of traffic hysteresis. Transportation Research Part B, Vol. 33, 1999, pp. 1-23.

-Zhang, H.M., Kim, T., (2005), A car-following theory for multiphase vehicular traffic flow. Transportation Research Part B 39 (5), pp.385–399.