سیستم هوشمند تشخیص آسیب ناشی از زلزله در پایه‌های پل با استفاده از تکنیک آشکار‌سازی اختلاف فاز

نوع مقاله: مقاله پژوهشی

نویسنده

دانشجوی کارشناسی ارشد، دانشکده مهندسی برق و کامپیوتر، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

در این پژوهش یک تکنیک برای نظارت بر سلامت ساختار پایه‌های یک پل نمونه که مدل کوچک شده از پل‌های رایج امروزی است با استفاده از تکنیک آشکار سازی اختلاف فاز بین دو گره گیرنده‌ی سنکرون در غالب شبکه‌های حس گر بی سیم مطرح شده ومورد شبیه سازی و ارزیابی قرار می‌گیرد.اساس این روش در قرار دادن آرایه ای از مدارات اسیلاتور با فرکانس بالا(4 گیگا هرتز) وارزان قیمت به صورت فرستنده بی سیم در محل‌های مورد نظر و با اهمیت ساختار پایه‌های پل مقیاس شده‌ی نمونه و دریافت و آنالیز سیگنال‌های ارسالی از آرایه‌ی فرستنده‌های مذکور،توسط دو گره گیرنده‌ی سنکرون استوار است.در واقع سیستم مانیتورینگ پیشنهادی برای نظارت بر سلامت ساختار پایه‌های پل،تغییرات اختلاف فاز بین دو گره گیرنده‌ی سنکرون را در قبل و بعد از وارد آمدن آسیب(تغییر شکل یا جابجایی) ناشی از عوامل مختلف به عنوان مثال زلزله را اندازه گرفته و دقتی در رنج یک دهم میلی متر از خود در شبیه سازی‌ها نشان می‌دهد. همچنین دارای قابلیت اعتماد بالایی به خاطر اعلام لحظه به لحظه‌ی وضعیت هر فرستنده شامل فعال ،غیر فعال وآسیب دیده،  برای اهداف نظارت بر سلامت ساختار پل‌ها می‌باشد.تکنیک و سیستم پیشنهادی دارای قیمت پایین تجهیزات نسبت به سایر متد SHM بوده وهمچنین حجم داده پردازی و پیچیدگی بسیار کمتری در مقایسه با موارد مشابه خود دارد.در این مقاله پیاده سازی میدانی انجام نگرفته است اما شبیه سازی کاملی با استفاده از آرایه ای از شش فرستنده(TX) و دو گیرنده(RX) برای پل مقیاس شده نمونه با شش پایه صورت گرفته و مبانی ریاضی،هندسی و پردازش سیگنال و جزییات شبیه سازی انجام شده به تفصیل مورد ارزیابی قرار گرفته است.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Smart System for Detection of Earthquake Induced Damages on Bridge Piers using Phase Difference Measurement Technique

نویسنده [English]

  • S SHorabisani
چکیده [English]

In this study, a new technique for monitoring the structural health of bridge piers, in point of view of earthquake induced damages, was introduced and then it was simulated and evaluated by the use of a scaled model of a typical bridge. This system use the detection of phase difference between two synchronous receiver nodes connected through a wireless sensor network, and is based on using an array of inexpensive high-frequency oscillator circuits
(4 GHz) as wireless transmitters through placing them in the important structural positions of the bridge piers, and then receiving and analyzing the signals sent by these transmitters by two synchronous receiver nodes. The proposed monitoring system measures the changes in phase difference between two synchronous receiver nodes before and after damage (displacement or deformation); it showed an accuracy of a tenth of a millimeter in the simulations, and it also has a high reliability in monitoring the structural heath of bridge because it provides a real-time report of status of each transmitter (activated, deactivated, damaged). The proposed system has a low price compared to other SHM methods and also has a much lower volume and complexity of data processing compared with similar techniques. This study did not had any field trial, but a complete simulation by the use of an array of six transmitters (TX) and two receivers (RX) was conducted for a scaled model with six piers, and mathematical and geometrical principles and signal processing and simulation details was thoroughly examined.
 
 

کلیدواژه‌ها [English]

  • structural health monitoring
  • Earthquake Induced Damages
  • Phase Difference Detection Technique
  • Bridge Pier Status Monitoring
  • Dual Synchronous Receiver

-         Sohraby, K., Minoli, D., and Znati, T. (2007), ‘Wireless sensor networks: technology, protocols, and applications’ (John Wiley & Sons.

-         Abdelzaher, T., Pereira, N., and Tovar, E. (2015), ‘Wireless Sensor Networks: 12th European Conference, EWSN 2015, Porto, Portugal, February 9-11, 2015, Proceedings.

-         Krishnamachari, B., Murphy, A.L., and Trigoni, N. (2014), ‘Wireless Sensor Networks: 11th European Conference, EWSN 2014, Oxford, UK, February 17-19, Proceedings.

 

-         Picco, G.P., and Heinzelman, W. (2012), ‘Wireless Sensor Networks: 9th European Conference, EWSN, Trento, Italy, February
15-17, Proceedings’ (Springer Science & Business Media.

-         Younis, M., Senturk, I.F., Akkaya, K., Lee, S., and Senel, F. (2014), ‘Topology management techniques for toleratingnode failures in wireless sensor networks: A survey’, Computer Networks, 58, pp. 254-283.

-         Ammari, H.M. (2013), ‘The Art of Wireless Sensor Networks: Volume 2, Advanced Topics and Applications’ (Springer Science & Business Media.

-         Nadeem, A., Hussain, M.A., Owais, O., Salam, A., Iqbal, S., and Ahsan, K. (2012), ‘Application specific study, analysis and classification of body area wireless sensor network applications’, Computer Networks.

-         Hammoudeh, M., and Newman, R. (2015), ‘Adaptive routing in wireless sensor networks: QoS optimisation for enhanced application performance’, Information Fusion, 22, pp. 3-15.

-         Moyo, P., Brownjohn, J., Suresh, R., and Tjin, S. (2005),  ‘Development of fiber Bragg grating sensors for monitoring civil infrastructure’, Engineering structures, 27, (12), pp. 1828-1834.

-         Trifunac, M., and Ebrahimian, M. (2014),  ‘Detection thresholds in structural health monitoring’, Soil Dynamics and Earthquake Engineering, 66, pp. 319-338.

-         Mokhtar, M., Owens, K., Kwasny, J., Taylor, S., Basheer, P., Cleland, D., Bai, Y., Sonebi, M., Davis, G., and Gupta, A.: ‘Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring’, Sensors Journal, IEEE, 12, (5), pp. 1470-1476.

-         Ko, J., and Ni, Y. ‘Technology developments in structural health monitoring of large-scale bridges’, Engineering structures, 2005, 27, (12), pp. 1715-1725.

-         Branco, F.A., and Mendes, P.A. ‘Thermal actions for concrete bridge design’, Journal of Structural Engineering, 1993, 119, (8),
pp. 2313-2331.

-         Farrar, C.R., and Doebling, S.W. (1999), ‘Structural health monitoring at los alamos national laboratory’.

-         Cooke, N., Priestly, M., and Thurston,
S. ‘Analysis and design of partially prestressed concrete bridges under thermal loading: Prestressed Concr. Inst. J. Vol 29 No 3 (1984), pp. 94–115’, Computer-Aided Design, 16, (6), pp. 338-339.

-         Thurston, S., Priestley, M., and Cooke, (1984), N.: ‘Influence of Cracking for Thermal Response of Reinforced Concrete Bridges’, Concrete International, 6, (8), pp. 36-48.

-         Rodrigues, C., Félix, C., Lage, A., and Figueiras, J. (2010), ‘Development of a long-term monitoring system based on FBG sensors applied to concrete bridges’, Engineering Structures, (8), pp. 1993-2002.

-         Li, H.-N., Li, D.-S., and Song, G.-B.: ‘Recent applications of fiber optic sensors to health monitoring in civil engineering’, Engineering structures, 2004, 26, (11), pp. 1647-1657.

-         Usmani, A., Rotter, J., Lamont, S., Sanad, A., and Gillie, M.: ‘Fundamental principles of structural behaviour under thermal effects’, Fire Safety Journal, 2001, 36, (8), pp. 721-744.

-         Xia, Y., Hao, H., Zanardo, G., and Deeks, A.: (2006), ‘Long term vibration monitoring of an RC slab: temperature and humidity effect’, Engineering Structures, 28, (3), pp. 441-452.

-         Koh, B., and Dyke, S.: (2007), ‘Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data’, Computers & structures, 85, (3), pp. 117-130.

-         Roberts-Wollman, C.L., Breen, J.E., and Cawrse, J.: (2002), ‘Measurements of thermal gradients and their effects on segmental concrete bridge’, Journal of Bridge Engineering, 7, (3), pp. 166-174.

-         Kang, D., Kim, H.-Y., and Kim, D.-H.: (2014), ‘Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures’, Smart Materials and Structures, 23, (7), pp. 740-741.

-         Kulprapha, N., and Warnitchai, P. :(2012), ‘Structural health monitoring of continuous prestressed concrete bridges using ambient thermal responses’, Engineering Structures, 40, pp. 20-38.

-         Priestley, M., and Buckle, I. (1979), ‘Ambient thermal response of concrete bridges’, in Editor  ‘Book Ambient thermal response of concrete bridges.

-         Nishikata, A., Ichihara, Y., and Tsuru, T.: (1995), ‘An application of electrochemical impedance spectroscopy to atmospheric corrosion study’, Corrosion Science, 37, (6),
pp. 897-911.

-         Wenzel, H., Furtner, P., and Clifton, R. (2015), ‘The Role of Structural Health Monitoring in the Life-Cycle-Management of Bridges’, in Editor  ‘Book The Role of Structural Health Monitoring in the Life-Cycle-Management of Bridges’.

-         Chen, W.-F., and Duan, L.: (2014), ‘Bridge Engineering Handbook: Construction and Maintenance’.

-         S. Shoorabi Sani, M. Baghaei-Nejad, and M. Kalate Arabi, (2015), "Study on Health Monitoring of Concrete Structures Using Wireless Sensor Networks," Journal of Electrical Systems and Signals, vol. 3,
pp. 37-46.

-         S. Shoorabi Sani, (2016), "A case study for application of fuzzy inference and data mining in structural health monitoring," Journal of AI and Data Mining.

-         S. Shoorabi Sani, M. Baghaei-Nejad, and                 M. Kalate Arabi, (2015), "Using a phase difference detection technique for monitoring the structural health of bridge piers," Structural Control and Health Monitoring.