ارزیابی دوام بتن‌غلتکی حاوی خاکستر پسماند زغال‌سنگ و فاقد افزودنی هوازا در برابر اثرات مخرب نمک‌های یخ‌زُدا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد‌، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی، مازندران، بابل

2 دانشیار، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی، مازندران، بابل

چکیده

هدف از این پژوهش امکان­سنجی بکارگیری خاکستر پسماند زغال‌سنگ بجای بخشی از سیمان در بتن‌غلتکی روسازی راه و بررسی دوام آن در برابر تاثیر نمک‌های یخ‌زُدا می‌باشد. در این تحقیق، از 4 ترکیب مختلف برای ساخت نمونه­های بتن‌غلتکی استفاده گردید. مقدار سیمان مخلوط کنترلی فاقد خاکستر پسماند زغال‌سنگ، 14% وزن کل مصالح خشک انتخاب شد. در سایر مخلوط­ها از خاکستر پسماند زغال‌سنگ به مقدار 2، 3 و 4 درصد وزن کل مصالح خشک استفاده شد. برای ارزیابی دوام، آزمایش­های مقاومت در برابر نفوذ یون کلر، مقاومت پوسته‌شدن سطح ناشی از نمک یخ‌زُدا و مقاومت در برابر سیکل­های انجماد و ذوب در حضور محلول نمک انجام شد. مخلوط حاوی 3 و 4 درصد خاکستر پسماند به ترتیب بیشترین و کمترین مقاومت را در برابر نفوذ یون کلر از خود نشان دادند. در انتهای آزمایش پوسته شدن سطح نتایج به دست آمده از نمونه‌های حاوی 2 و 3 درصد خاکستر پسماند مشابه نمونه کنترلی بود. همچنین نتایج آزمایش مقاومت در برابر سیکل‌های انجماد-ذوب حاکی از رفتار بسیار مناسب نمونه‌های کنترلی و حاوی 2 و 3 درصد پسماند خاکستر بوده‌است. در حالی‌که نمونه حاوی 4 درصد از این ماده پس از 180 سیکل کاهش قابل توجهی در مدول الاستیسیته دینامیکی از خود نشان داد. مطابق نتایج، بکارگیری 2 و 3 درصد خاکستر پسماند زغال‌سنگ مقاومت قابل قبولی در برابر اثرات یخ‌زدگی بلند مدت و در حضور نمک یخ‌زُدا بدست می‌دهند.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation the Durability Properties of Non-Air Entrained Roller Compacted Concrete Containing Coal Waste Ash against Detrimental Effects of De-Icing Salts

نویسندگان [English]

  • S. A. S. Mohammadi Rad 1
  • A. Modarres 2
1 Noshirvani University of Technology, Mazandaran, Babol, Iran. and M.Sc., Student, Civil Engineering Department, Noshirvani University of Technology, Mazandaran, Babol, Iran.
2 Associate Professor, Civil Engineering Department, Noshirvani University of Technology, Mazandaran, Babol, Iran.
چکیده [English]

The aim of this study is feasibility of using Coal Waste Ash (CWA) as partial replacement of cement in non-air entrained Roller Compacted Concrete Pavement (RCCP) and evaluating its durability against deicing salts effect. In this research, 4 different mix designs were used to prepare RCC samples. The cement content equivalent to 14% by mass of dry materials was selected for control mixture without CWA. In other mixture, 2, 3 and 4% (by mass of dry materials) CWA was used. In order to evaluation the durability, chloride ion penetration, deicing salt surface scaling resistance and freeze-thaw resistance exposed to salt solution were performed. According to results, all mixture in this research obtained acceptable chloride ion penetration. The mixture with 3 and 4% CWA showed the highest and lowest chloride ion resistance respectively. By increasing CWA contents to amount of 3%, surface scaling exposed to salt solution in RCC samples delayed approximately 5 cycles. However, start of surface scaling in mixture containing 4 % CWA occurs in lower cycles compare to other sample. At the end of surface scaling test, weight changes in samples containing 2 or 3% CWA is almost the same as controls mixture. Up to 180 freeze-thaw cycles in presence of salt solution, ultrasonic pulse velocity in control mixture is higher compare to other sample. While, the reduction of this parameter is lowest for 3% CWA samples at the end of the freeze-thaw test. Based on ultrasonic pulse velocity during 300 freeze-thaw cycles, control, 2 and 3% CWA samples have excellent resistance. Mixture containing 4% CWA have excellent resistance during 180 freeze-thaw cycles. However its resistance decreased in continues. Relative dynamic modulus of elasticity during 300 freeze-thaw cycles is almost the same for control, 2 and 3% CWA samples. While this parameter for mixture containing 4% CWA reduced more than 40% at the end of freeze-thaw cycles. The durability factor at the end of freeze-thaw test, are satisfactory for control mixture and samples containing 2 and 3% CWA.
 
 

کلیدواژه‌ها [English]

  • Roller compacted concrete
  • Coal Waste Ash
  • Durability
  • Deicing Salt

-       ACI 325.10R-95. (Reapproved 2001) (1995), “Report on Roller-Compacted Concrete Pavements”, Report by ACI Committee 325, March.

 

-       Aghabaglou, A.M. Cakir, Ö.A. Ramyar, K. (2013), “Freeze-thaw resistance and transport properties of
high-volume fly ash roller compacted concrete designed by maximum density method”, Cem. & Conc. Com., 37, pp.259-266.

 

-       Akcil, A. and Koldas, S., (2006), “Acid Mine Drainage (AMD): causes, treatment and case studies”, J. of Clea. Pro,. 14, pp.1139-1145.

 

-       Berkowski, P. Kazberuk, M.K. (2015), “Effect of fiber on the concrete resistance to surface scaling due to cyclic freezing and thawing”, proc. Eng,. 111, pp.121-127.

 

-       Banthia, N. Piegeon, M. Marchand, J. Boisvert, J. (1992), “Permeability of Roller Compacted Concrete”, J. of Mat. Civ. Eng.,­4, pp.27-40.

 

-       Blackburn, R.R. Bauer, M.K. Amsler, E.D. Boselly, E.S. Mcelory, D.A. (2004), “Snow and Ice Control: Guidelines for Materials and Methods”, NCHRP Report 526, National Cooperative Highway Research Program, Transportation Research Board of National Academies, Washington, D.C.

 

-       Deja, J. (2003), “Freezing and de-icing resistance of blast furnace slag concrete”, Cem. & Conc. Com., 25,
pp.357-361.

 

-       Gottlieb, B. Gilbert, S.G. Evans, L.G. (2010), “Coal Ash: The toxic threat to our health and environment”, A Report from Physicians for Social Responsibility and Earth Justice, US, Washington. D.C, September.

 

-       Hazaree, C. Ceylan, H. Wang, K. (2011), “Influences of mixture composition on properties and freeze-thaw resistance of RCC”, Cons. and Bui. Mat,. 25,
pp.313-319.

 

-       Heede, P.V.D. Furniere, J. Belie, N.D. (2013), “Influence of air entraining agents on deicing salt resistance and transport properties of high-volume fly ash concrete”, Cem. & Conc. Com,. 37, pp.293-303.

 

-       Hesami, S. Modarres, A. Soltaninejad, M. Madani, H. (2016), “Mechanical properties of roller compacted concrete pavement containing coal waste and limestone powder as partial replacements of cement”, Cons. & Bui. Mat,. 111, pp.625-636.

 

-       Hossain, K. and Fu, L. (2015) “Optimal Snow and Ice Control of Parking Lots and Sidewalks: A Summary Final Report”, University of WATERLOO Report, Its Lab, Department of Civil & Environmental Engineering, Ontario, Canada, January.

 

-       “Human and Ecological Risk Assessment of Coal Combustion Wastes”, (2010), “U.S. Environmental Protection Agency”, Office of Solid Waste and Emergency Response, Office of resource Conservation and Recovery, April.

 

 

-       Kim, J. Moon, J.H. Shim, J.W. Sim, J. Lee, H.G. Zi, G. (2014) “Durability properties of a concrete with waste glass sludge exposed to freeze-and-thaw condition and de-icing salt”, Cons. and. Bui. Mat,. 66, pp.398-402.

 

-       Laskowski, J. (2001), “Coal flotation and fine coal utilization”, The Netherlands, Amsterdam: Elsevier,
pp. 475-480.

 

-       Liang, W.J. Tao, S.L. Min, N. (2014),  “ Study on the Salt Scaling Resistance of Pavement Cement Concrete”, J. of Hig. and Trans. Res. and Dev., 8(2), pp.1-4.

 

 

-       Liu, Z. Hansen, W. (2016), “Freeze-thaw durability of high strength concrete under deicer salt exposure”, Cons. and Bui. Mat,. 102, pp.478-485.

 

-       Marchand, J. Pigeon, M. Bager, D. Talbot, C. (1999), “Influence of Chloride Solution Concentration on Deicer Salt Scaling Deterioration of Concrete”, ACI. Mat. J,. 96, pp.429-435.

 

-       Mehta, P.K. Monteiro, P. (2005), “Concrete: microstructure, properties, and materials” McGraw-Hill Professional, 3th Edn., New York. pp. 684.

 

-       Modarres, A. Ayar, P. (2014), “Coal waste application in recycled asphalt mixtures with bitumen emulsion”, J. of Clea. Pro,. 83, pp.263-272.

 

-       Modarres, A. Nosoudy, Y.M. (2015), “Clay stabilization using waste and lime-Technical and environmental impacts”, App. Cl. Sci,. 116-117, pp.281-288.

 

-       Modarres, A. Rahmanzadeh, M. (2014), “Application of coal waste powder as filler in hot mix asphalt”, Cons. and Bui. Mat,. 66, pp.476-483.

 

 

-       Modarres, A. Rahmanzadeh, M. Ayar, P. (2015), “Effect of coal powder in hot mix asphalt compared to conventional fillers: mix mechanical properties and environmental impacts”, J. of Clea. Pro,. 91, pp.262-268.

 

-       Moradzadeh, A. Ardejani, F.D. Shokri, B.J. Sarkheil, H. Osanloo, M. (2007), “A method for coal waste disposal site selection for prevention of environmental impacts”, IMWA Symposium: Water in Mining Environment, Caligari, Italy, May, pp.1-4.

 

 

-       Neville, A.M. (2010), “Concrete Technology”, Longman Group, 2th Edn., pp.460, UK,.

 

 

 

-       Oliver, J.G.J. Maenhout, G.J. Muntean, M. Peters, J.A.H.W. (2014), “Trends in global CO2 emissions”, PBL Netherlands Environmental Assessment Agency, Institute for Environment and Sustainability(IES) & European Commission’s Joint Research Centre (JRC), December.

 

-          Piegeon, M. Malhotra, V.M. (1995), “Frost Resistance of Roller-Compacted High-Volume Fly Ash Concrete”, J. of Mat. Civ. Eng., 7, pp.208-211.

 

-          Portland Cements Association (OCA). (2004),“Guide Specification for Construction of Roller-Compacted Concrete Pavements”, USA, Illinois, Skokie, June.

 

-          Rafieizonooz, M. Mirza, J. Salim, M.R. Hussin, M.W. Khankhaje, E. (2016), “Investigation of coal bottom ash and fly ash in concrete as replacement”, Cons. & Bui. Mat,. 116, pp.15-24.

 

-          Ramezanianpour, A.A. Nadooshan, M.J, Peydayesh, M. Ramezanianpour, A.M. (2014), “Effect of Entrained Air Voids on Salt Scaling Resistance of Concrete Containing a New Composite Cement”, J. of. Civ. Eng,. 18(1), pp.213-219.

 

-          Rao, S.K. Sravana, P. Rao, T.C. (2016), “Experimental studies in Ultrasonic Pulse Velocity of Roller Compacted Concrete Pavement Containing Fly Ash and M-Sand”, Int. J. of Pave. Res. and Tech., Article in Press. http://dx.doi.org/10.1016/j.ijprt.2016.08.003.

 

-       Sengul, O. Tasdemir, M.A. (2009), “Compressive Strength and Rapid Chloride Permeability of Concrete with Ground Fly Ash and Slag”, J. of Mat. Civ. Eng., 21, pp.494-501.

 

-          Shahhoseiny, M. Ardejani, F.D. Shafaei, S.Z. Noaparast, M. Hamidi, D. (2013), “Geochemical and Mineralogical Characterization of a Pyritic Waste Pile at Anjir Tangeh Coal Washing Plant, Zirab, Northern Iran”, Mine. Water. Environ,. 32, pp.84-96.

 

-          Sim, J. Park, C. (2011), “Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate”, Waste. Manag., 31, pp.2352-2360.

 

-          Skripkiūnas, G. Nagrockienė, D. Girskas, G. Vaičienė, M. Baranauskaitė, E. (2013), “The Cement Type Effect on Freeze-Thaw and Deicing Salt Resistance of Concrete”, Proc. Eng,. 57, pp.1045-1051.

 

-       Sun, C. Li, W. Hou, B. (2012), “Study on Frost-salt Resistance of Fly Ash Concrete”, Adv. Mat. Res,. 598, pp.432-437.

 

-  Urban, J. Kostelecká, M. Klečka, T. (2014), “Surface layer parameter of concrete in relation to deicing salt scaling resistance”, Adv. Mat. Res,. 1000, pp.298-301.

 

-  Valenza, J.J. and Scherer, G.W. (2007), “A review of salt scaling: I. Phenomenology”, Cem. Con. Res,. 37, pp.1007-1021.

 

 

-  Whitehurst, E.A. (1951), “Soniscope tests concrete structures”, J. of Ame. Con. Ins., 47, pp.443-444.

 

-                      WON, J.P. JANG, C.I. LEE, S.W, KIM, W.Y. (2009), “Durability Performance of Roller Compacted Concrete Using Fly Ash”, Brit. Mat. Com,. 9, 161-168.

 

-  Zaheri, M. Nili, M. (2011), “Deicer salt-scaling resistance of non-air-entrained roller-compacted concrete pavements”, Cons. and Bui. Mat,. 25, pp.1671-1676.