مسیریابی پایدار وسایل نقلیه ناهمگن با تحویل و برداشت همزمان با لحاظ نمودن فاکتورهای اقتصادی، زیست محیطی و اجتماعی به صورت یکپارچه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی صنایع، دانشکده فنی، دانشگاه تهران، تهران، ایران

2 استاد، دانشکده مهندسی صنایع، دانشکده فنی، دانشگاه تهران، تهران، ایران

10.22034/tri.2021.84266

چکیده

در این مقاله به معرفی مسئله مسیریابی پایدار وسایل نقلیه ناهمگن در یک شبکه با جریانهای مستقیم و معکوس میپردازیم، جایی که فاکتورهای مختلف اقتصادی، زیست محیطی و اجتماعی در قالب یک مدل ریاضی برنامه ریزی عددصحیح مختلط خطی دو هدفه لحاظ می شوند. هدف مسئله طراحی مسیرهای سرویس دهی و تعیین سرعت بهینه وسایل حمل و نقل به گونه ای می باشد که از یک سو میزان سوخت مصرفی و به تبع آن آلودگی های ناشی از فرایند حمل و نقل حداقل شود و از سوی دیگر و در جهت ایجاد رضایتمندی بین رانندگان، بار کاری وسایل حمل و نقل مختلف از نظر مدت زمان فعالیت بالانس باشد. برای تخمین میزان سوخت مصرفی از تابع جامعی استفاده شده است که در آن میزان سوخت مصرفی تابعی از مسافت طی شده همچنین سرعت، میزان بار و مشخصه های فنی وسیله نقلیه، می باشد. جهت حل مسئله به فرم دقیق از روش حدی تقویت شده استفاده می شود، همچنین برای حل مسئله در ابعاد بزرگ دو الگوریتم فراابتکاری چندهدفه مبتنی بر الگوریتم ژنتیک و الگوریتم آتش بازی توسعه داده شده است. برای افزایش کارایی الگوریتمهای یاد شده از یک متد جستجوی محلی نیز در ساختار آنها استفاده شده است. نتایج حل مثال های مختلف نشان دهنده عملکرد بهتر الگوریتم آتش بازی است. همچنین تحلیل نقاط پارتو نشان می دهد با افزایش حدودا یک درصدی در هزینه سوخت، می توان طولانی ترین تور را حتی تا بیش از 20 درصد و پراکندگی بین مدت زمان کارکرد ماشین های مختلف را تا 15 درصد کاهش داد. همچنین این پراکندگی با افزایش 3 درصد در مصرف سوخت می تواند تا 25 درصد کاهش یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sustainable routing of heterogeneous vehicles with simultaneous pickup and delivery considering economic, environmental and social factors

نویسندگان [English]

  • Mehrdad Mirzabaghi 1
  • Fariborz Jolai 2
  • Jafar Razmi 2
  • reza Tavakkoli-Moghaddam 2
1 Ph.D. Student, School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
2 Professor, School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
چکیده [English]

In this paper, we introduce the sustainable routing problem in a network with forward and reverse flows, in which different economic, environmental and social factors are considered in a bi-objective mixed integer linear programming mathematical model. The purpose of the problem is to design the service routes and determine the optimal speed of vehicles in such a way that, on the one hand, the amount of fuel consumed and, consequently, pollution caused by the transportation process are minimized, and on the other hand, in order to create satisfaction among drivers, the workload of different vehicles in terms of the duration of tour is balanced. A comprehensive function is used to estimate the amount of fuel consumed, in which the amount of fuel consumed is a function of the distance traveled as well as the speed, load, and technical characteristics of the vehicle. In order to solve the problem optimally, the augmented epsilon constraint method is used. Also, for solving large-scale instances, two multi-objective meta-heuristic algorithms based on genetic algorithm and fireworks algorithm have been developed. In order to increase the efficiency of these algorithms, a local search method is also used in their structure. The results of solving various examples represent a better performance of the fireworks algorithm. Also analysis of the pareto-front shows that with a one percent increase in fuel cost, the longest tour can be reduced by more than 20% and the difference between the running times of different machines is reduced by 15%. This difference can also be reduced by up to 25% by increasing fuel consumption by 3%.

کلیدواژه‌ها [English]

  • Sustainability
  • green vrp
  • speed optimization
  • Multi-Objective Optimization
  • Metaheuristics
-  Asefi, H., Jolai, F., Rabiee, M., & Araghi,
M. E. T., (2014), "A hybrid NSGA-II and VNS for solving a bi-objective no-wait flexible flowshop scheduling problem", Int J Adv Manuf Technol, 89, pp.139–144.
 
-  Barth, M., & Boriboonsomsin, K., (2009), "Energy and emissions impacts of a freeway-based dynamic eco-driving system", Transportation Research Part D: Transport and Environment, 14(6), pp.400–410.
 
-  Barth, M., Younglove, T., & Scora, G. (2005). Development of a heavy-duty diesel modal emissions and fuel consumption model. Development of A Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model.
 
-  Bektaş, T., & Laporte, G. (2011). The Pollution-Routing Problem. Transportation Research Part B: Methodological, 45(8), 1232–1250.
 
-  Benjaafar, S., Li, Y., & Daskin, M. (2013). Carbon Footprint and the Management of Supply Chains: Insights From Simple Models. IEEE Transactions on Automation Science and Engineering, 10(1), 99–116.
 
-  Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2015). The vehicle routing problem: State of the art classification and review. Computers and Industrial Engineering.
 
-  Browne, M., Allen, J., & Leonardi, J. (2011). Evaluating the use of an urban consolidation centre and electric vehicles in central London. IATSS Research, 35(1), 1–6.
 
-  Carter, C. R., & Rogers, D. S. (2008). A framework of sustainable supply chain management: Moving toward new theory. International Journal of Physical Distribution and Logistics Management, 38(5), 360–387.
 
-  Cheng, C., Yang, P., Qi, M., & Rousseau, L. M. (2017). Modeling a green inventory routing problem with a heterogeneous fleet. Transportation Research Part E: Logistics and Transportation Review, 97, 97–112.
 
-  Dabia, S., Demir, E., & Woensel, T. Van. (2016). An Exact Approach for a Variant of the Pollution-Routing Problem. Transportation Science, trsc.2015.0651.
 
-  Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), pp.182–197.
-  Dekker, R., Bloemhof, J., & Mallidis, I. (2012). Operations Research for green logistics - An overview of aspects, issues, contributions and challenges. European Journal of Operational Research, 219(3), pp.671–679.
-  Demir, E., Bektaş, T., & Laporte, G. (2012). An adaptive large neighborhood search heuristic for the Pollution-Routing Problem. European Journal of Operational Research, 223(2), pp.346–359.
-  Demir, E., Bektaş, T., & Laporte, G. (2014a). A review of recent research on green road freight transportation. European Journal of Operational Research, 237(3), pp.775–793.
-  Demir, E., Bektaş, T., & Laporte, G. (2014b). The bi-objective Pollution-Routing Problem. European Journal of Operational Research, 232(3), pp.464–478.
-  Eskandarpour, M., Dejax, P., Miemczyk, J., & Péton, O. (2015), "Sustainable supply chain network design: An optimization-oriented review, Omega, 45(8), pp.1232–1250.
-  Franceschetti, A., Demir, E., Honhon, D., Van Woensel, T., Laporte, G., & Stobbe, M. (2016). A metaheuristic for the time-dependent pollution-routing problem. European Journal of Operational Research. 46(3), 360–387.
-  Franceschetti, A., Honhon, D., Van Woensel, T., Bektaş, T., & Laporte, G. (2013). The time-dependent pollution-routing problem. Transportation Research Part B: Methodological, 56, 265–293.
-  Jaehn, F. (2016). Sustainable Operations. European Journal of Operational Research. 36(2), 182–197.
-  Kara, İ., Kara, B. Y., & Yetis, M. K., (2007), "Energy minimizing vehicle routing problem", Combinatorial Optimization and Applications, Lecture Notes in Computer Science, 46(1), pp.62–71.
-  Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2014), "The fleet size and mix
pollution-routing problem", Transportation Research Part B: Methodological, 70,
pp.239–254.
-  Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G., (2016). The impact of depot location, fleet composition and routing on emissions in city logistics. Transportation Research Part B: Methodological, 84, pp.81–102.
 
-  Kramer, R., Subramanian, A., Vidal, T., & Cabral, L. dos A. F. L. D. A. F., (2015), "A matheuristic approach for the Pollution-Routing Problem", European Journal of Operational Research, 243(2), pp.523–539.
-  Majidi, S., Hosseini-motlagh, S., & Ignatius, J., (2018), "Adaptive large neighborhood search heuristic for pollution-routing problem with simultaneous pickup and delivery", Soft Computing, 22(9), pp.2851–2865.
-  Matl, P., Hartl, R. F., & Vidal, T., (2016), "Equity Objectives in Vehicle Routing: A Survey and Analysis. arXiv Preprint arXiv:1605.08565".
-  Mavrotas, G., (2009), "Effective implementation of the e -constraint method in Multi-Objective Mathematical Programming problems. Applied Mathematics and Computation", 213(2), pp.455–465.
-  Pishvaee, M. S. ., Razmi, J. ., & Torabi, S. A. . (2014), "An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain", Transportation Research Part E: Logistics and Transportation Review, 67, pp.14–38.
-  Rabbani, M., Navazi, F., Farrokhi-asl, H., & Balali, M. H. (2018). A sustainable transportation-location-routing problem with soft time windows for distribution systems. Uncertain Supply Chain Management, 6, pp.229–254.
-  Rezaei-Malek, M., Razmi, J., Tavakkoli-Moghaddam, R., & Taheri-Moghaddam, A. (2016), "Towards a psychologically consistent cellular manufacturing system", International Journal of Production Research, 55(3),
pp.492–518.
-  Soysal, M., Bloemhof-Ruwaard, J. M., Haijema, R., & van der Vorst, J. G. A. J., (2015), "Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty", International Journal of Production Economics, 164, pp.118–133.
 
-  Soysal, M., Bloemhof-Ruwaard, J. M., Haijema, R., & van der Vorst, J. G. A. J., (2016), "Modeling a green inventory routing problem for perishable products with horizontal collaboration. Computers & Operations Research", 89, pp.168–182.
 
-  Tan, Y., & Zhu, Y., (2010), "Fireworks Algorithm for Optimization", pp. 355–364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13495-1_44.