ارائه مدلی جدید جهت به‌کارگیری تاکسی‌های هوشمند در کلان شهر تهران در راستای سازماندهی حمل و نقل عمومی: رویکرد ایجاد تعادل بین عرضه و تقاضا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مهندسی صنایع/ دانشکده مهندسی صنایع/ دانشگاه علم و صنعت ایران/تهران/ ایران

2 دانشکده مهندسی راه آهن، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

امروزه، یکی از اصلی­ترین موضوعات مورد بررسی در کلان شهرهای دنیا، چگونگی استفاده از سیستم­های حمل و نقل عمومی مدرن و تحقیق و توسعه آن ها به شمار می­آید که حاکی از اهمیت شایان توجه استفاده از این نوع سیستم­ها در اغلب کشورها است. حال یکی از  نوآوری های مهم در سیستم­های حمل و نقل شهری، استفاده از تاکسی­های هوشمند و بهبود سیستم­های سفارش آنلاین می باشد؛ در حالی­که در کلان شهر تهران هنوز استفاده از تاکسی­های هوشمند و بهینه­سازی پوشش شبکه آن­ها یکی از مسائل مهم شهرداری است. لذا در این مقاله، مدلی جدید با دو استراتژی متفاوت در راستای هوشمند­سازی تاکسی های تهران  ارائه می گردد. در ابتدا با استفاده از مفهوم زنجیره ی سفر، مدلی با عنوان شبکه زنجیره سفر، منطبق با وضعیت شهر تهران ارائه شده و پس از شناسایی نقاط تقاضای سفر،الگوریتم خوشه بندی مبتنی بر چگالی، جهت ارزیابی مدل پیشنهادی به کار گرفته شده است. جهت بهبود عملکرد الگوریتم مذکور و تنظیم پارامترهای آن از روش طراحی آزمایشات استفاده شده و سپس مراکز خوشه ها به عنوان ایستگاه های تاکسی هوشمند تعیین گردیده است. نتایج حاصل نشان می دهد که حدود 12/53 درصد از نقاط به دست آمده به عنوان ایستگا­ه­های پیشنهادی تاکسی­های هوشمند در شهر تهران، حتی با وضعیت فعلی قابلیت پیاده­سازی دارند، همچنین مدل پیشنهادی به صورت همزمان با رویکرد ایجاد تعادل بین عرضه و تقاضا، قابلیت استفاده از حداکثر ظرفیت تاکسی­ها و کمترین اتلاف وقت مسافران برای دسترسی به تاکسی را فراهم می­نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Development a New Model for Using Intelligent Taxis in the Metropolis of Tehran to Organize Public Transportation: Supply And Demand Equilibrium Approach

نویسندگان [English]

  • aghdas badiee 1
  • H. Hajian 2
  • M. Ghazanfari 3
1 Industrial Engineering / Faculty of Industrial Engineering / Iran University of Science and Technology / Tehran / Iran
2 M.Sc. Student, Faculty of Railway Engineering, Iran University of Science and Technology, Tehran.
3 Professor, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

Nowadays, one of the most important issues in the metropolises of all around the world is using the modern public transportation systems, research and development in this field which indicates the importance of using these types of systems in most countries. One of the most attractive innovation in urban transportation system is using intelligent taxis and improvement in online ordering systems; while in the metropolis of Tehran, the use of smart taxi and optimization of the network coverage is one of the important issues of the municipality. Therefore, in this paper, a new model based on two different strategies for ordering taxis in Tehran is presented for the first time. First, using the concept of the trip chain, a model called trip chain network is presented in accordance with Tehran's situation. After identifying the demand points, a density-based spatial clustering applications with noise (DBSCAN) is used to evaluate the proposed model. To improve the performance of the algorithm and set its parameters, the design of experiment method (DOE) was used and then cluster centers were designated as intelligent taxi stations. The results show centers of these clusters are the best feasible points for developing intelligent taxi stations in Tehran and 53.12 percent of the points obtained as proposed stations of smart taxis are matched with the current situations. Also, the proposed model can provide the maximum usage of taxis and reduce the wasting time for passengers to access the taxi by striking an equilibrium approach between supply and demand.

کلیدواژه‌ها [English]

  • Density-Based Spatial Clustering
  • Supply and demand equilibrium
  • Intelligent transportation
  • Parameter tuning
  • Trip chain

- حبیبیان، م.، دیباج، س. و رحمتی، ی.، (1396)، "بررسی سیاست­های مدیریت تقاضای حمل ونقل در سفرهای کوتاه کاری به محدوده مرکزی شهر تهران"، مهندسی حمل و نقل، دوره 8 ، شماره 4، ص. 662-627.

- سیدابریشمی، س. الف.، خانزاد، ای.، زرین مهر، اف. ع.، ممدوحی، ا.ر. (1396)، " ارائه یک روش ابتکاری برای طراحی خطوط شبکه حمل ونقل همگانی با استفاده از الگوریتم تولید مسیر"، مهندسی حمل و نقل، دوره 8 ، شماره 4، ص. 643-654.

- حمیدی، ح. الف.، (1395)، " ارائه یک ساختار هوشمند برای مدیریت ترافیک در شرایط اضطرار"، مهندسی حمل و نقل، دوره 8 ، شماره 2، ص. 215-230.

 

-ANAND, S., PADMANABHAM, P., GOVARDHAN, A. & KULKARNI, R. H. (2018), "An Extensive Review on Data Mining Methods and Clustering Models for Intelligent Transportation System", Journal of Intelligent Systems,Vol. 27, No. 2, pp.263-273.

 

-BIRANT, D. & KUT, A. (2007) "ST-DBSCAN: An algorithm for clustering spatial–temporal data", Data & Knowledge Engineering,  Vol. 60, No. 1, pp.208-21.

 

-BORNDÖRFER, R., GRÖTSCHEL, M., KLOSTERMEIER, F. & KÜTTNER, C., (1999), "Telebus Berlin: Vehicle scheduling in a dial-a-ride system. Computer-Aided Transit scheduling". Springer.

 

-BREUNIG, M. M., KRIEGEL, H.-P., NG, R. T. & SANDER, J., (2000), "LOF: identifying density-based local outliers".  ACM sigmod record, ACM, 93-104.

 

-CORDEAU, J.-F., GENDREAU, M., LAPORTE, G., POTVIN, J.-Y. & SEMET, F. (2002), "A guide to vehicle routing heuristics", Journal of the Operational Research society",  Vol. 53, No. 5, pp. 512-22.

 

-DE FABRITIIS, C., RAGONA, R. & VALENTI, G., (2008), "Traffic estimation and prediction based on real time floating car data".  Intelligent Transportation Systems, ITSC 2008. 11th International IEEE Conference on, 2008. IEEE,
pp. 197-203.

 

-GENDREAU, M., HERTZ, A. & LAPORTE, G., (1994). "A tabu search heuristic for the vehicle routing problem", Management science,  Vol. 40, No. 10, pp. 1276-90.

 

GLOVER, F. & LAGUNA, M., (1997), "General purpose heuristics for integer programming—Part I", Journal of Heuristics,  Vol. 2 , No. 4, pp. 343-58.

 

-GRAU, J. M. S. & ROMEU, M. A. E., (2015), "Agent based modelling for simulating taxi services", Procedia Computer Science,  Vol. 52, pp. 902-07.

 

-Jamil, M. S., & Akbar, S., (2017), "Taxi passenger hotspot prediction using automatic ARIMA model", In Science in Information Technology, 2017 3rd International Conference on IEEE, pp. 23-28.

 

-JUNG, J., JAYAKRISHNAN, R. & PARK, J. Y., (2016), "Dynamic Shared‐Taxi Dispatch Algorithm with Hybrid‐Simulated Annealing", Computer‐Aided Civil and Infrastructure Engineering,  Vol. 31, No. 4, pp. 275-91.

 

-KNORR, E. M. & NG, R. T., (1999), "Finding intensional knowledge of distance-based outliers".  VLDB, pp. 211-22.

 

-KNORR, E. M., NG, R. T. & TUCAKOV, V., (2000), "Distance-based outliers: algorithms and applications", The VLDB Journal—The International Journal on Very Large Data Bases,  Vol. 8, No. 3-4, pp. 237-53.

 

-KNOX, E. M. & NG, R. T. (1998), "Algorithms for mining distancebased outliers in large datasets".  Proceedings of the International Conference on Very Large Data Bases, Citeseer, pp. 392-403.

 

-KOK, A., HANS, E., SCHUTTEN, J. & ZIJM, W. (2010), "A dynamic programming heuristic for vehicle routing with time-dependent travel times and required breaks", Flexible Services and Manufacturing Journal,  Vol. 22, No. 1-2, pp. 83-108.

 

-LI, X., HAN, J., KIM, S. & GONZALEZ, H., (2007), "Roam: Rule-and motif-based anomaly detection in massive moving object data sets".  Proceedings of the 2007 SIAM International Conference on Data Mining, SIAM, pp. 273-84.

 

-LIAO, Z., YU, Y. & CHEN, B., (2010), "Anomaly detection in GPS data based on visual analytics".  Visual Analytics Science and Technology (VAST), 2010 IEEE Symposium on, 2010. IEEE,  pp. 51-58.

 

-MA, S., ZHENG, Y. & WOLFSON, O., (2015), "Real-time city-scale taxi ridesharing", IEEE Transactions on Knowledge and Data Engineering,  Vol. 27, No. 7, pp. 1782-95.

 

-MACIEJEWSKI, M. & BISCHOFF, J. (2015), "Large-scale Microscopic Simulation of Taxi Services", Procedia Computer Science,  Vol. 52, pp. 358-64.

 

-Miao, F., Han, S., Lin, S., Stankovic, J. A., Zhang, D., Munir, S., Huang, H., He, T. & Pappas, G. J., (2016), "Taxi Dispatch With Real-Time Sensing Data In Metropolitan Areas: A Receding horizon control approach", IEEE Transactions on Automation Science and Engineering,  Vol. 13, No. 2, pp. 463-78.

 

-NANRY, W. P. & BARNES, J. W., (2000), "Solving the pickup and delivery problem with time windows using reactive tabu search", Transportation Research Part B: Methodological,  Vol. 34, No. 2, pp. 107-21.

-Papadimitriou, S., Kitagawa, H., Gibbons, P. B. & Faloutsos, C., (2003), "Loci: Fast outlier detection using the local correlation integral".  Data Engineering, 2003. Proceedings. 19th International Conference on,  IEEE, pp. 315-26.

-PARRAGH, S. N., DOERNER, K. F. & HARTL, R. F., (2010), "Variable neighborhood search for the dial-a-ride problem", Computers & Operations Research,  Vol. 37, No. 6, pp. 1129-38.

 

-Ramasamy, M. & Subramani, B., (2014), "Taxi Drivers Intelligence Based Time Dependent Routing For Smart Driving". Vol. 2, No. 2, pp. 57-63.

 

Ramaswamy, S., Rastogi, R. & Shim, K. (2000), "Efficient algorithms for mining outliers from large data sets".  ACM Sigmod Record, ACM, pp. 427-38.

 

-Sillito, R. R. & Fisher, R. B., (2008), "Semi-supervised Learning for Anomalous Trajectory Detection".  BMVC, pp. 1025-44.

 

-Toth, P. & Vigo, D., (1997), "An exact algorithm for the vehicle routing problem with backhauls", Transportation science,  Vol. 31, No. 4, pp.372-85.

 

-Vidović, M., Radivojević, G. & Raković, B., (2011), "Vehicle routing in containers pickup up and delivery processes", Procedia-Social and Behavioral Sciences,  Vol. 20, pp. 335-43.

 

-WANG, H., CHEU, R. L. & LEE, D.-H. (2014) "Intelligent Taxi Dispatch System for Advance Reservations", Journal of Public Transportation,  Vol. 17, No. 3 , pp. 8.

 

-Xin, F., Liu, J., & Wang, X., (2018), "A Passenger Satisfaction and Loyalty Evaluation Methodology for Intelligent Taxi Dispatching System", Transportation Research Board 97th Annual Meeting, No. 18-02387.

 

-Yongmei, Z., Youwei, W., Mengmeng, L., Kuo, X. & Sha, G. (2015), "Design and Implementation of the Key Technology for Calling Taxi".  Information Technology and Intelligent Transportation Systems: Volume 1, Proceedings of the 2015 International Conference on Information Technology and Intelligent Transportation Systems ITITS 2015, Springer, pp. 653-63.

 

-YUAN, J., ZHENG, Y., XIE, X. & SUN, G. (2013) "T-drive: Enhancing driving directions with taxi drivers' intelligence", IEEE Transactions on Knowledge and Data Engineering,  Vol. 25, No. 1, pp. 220-32.

-ZHAN, X., QIAN, X. & UKKUSURI, S. V. (2016) "A Graph-Based Approach to Measuring the Efficiency of an Urban Taxi Service System", IEEE Transactions on Intelligent Transportation Systems,  Vol. 17, No. 9, pp. 2479-89.

 

-Zhou, Z., Dou, W., Jia, G., Hu, C., Xu, X., Wu, X. & Pan, J., (2016), "A method for real-time trajectory monitoring to improve taxi service using GPS big data", Information & Management. Vol. 53, No. 8, pp. 964-977.