توسعة یک مدل ریاضی مکان‌یابی تسهیلات زنجیرة تأمین حلقه بستة‌ سبز با در نظر گرفتن اثر یادگیری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 استاد یار،مهندسی صنایع، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی،نجف آباد، ایران

چکیده

مسائل محیط زیست در قرن حاضر یک موضوع مهم جهانی است. بنابراین در سال‌های اخیر مدیریت زنجیرة­ تأمین حلقه­بستة سبز به طور فزآینده‌ای به عنوان یک نتیجه از قوانین و مقررات دولتی و انتظارات مصرف‌کنندگان افزایش یافته است. در این مطالعه تلاش شده ­است تا یک مدل مکان‌یابی تسهیلات برای یک شبکة زنجیرة­ تأمین حلقه­بستة سبز متشکل از تأمین‌کنندگان، تولیدکنند­گان، توزیع‌کنندگان، مشتریان، مراکز بازیافت و انهدام ارائه شود. از این رو،یک مدل برنامه‌ریزی خطی ترکیبی دوهدفه جهت طراحی شبکه با در نظر گرفتن اهداف حداقل­سازی هزینه‌های کل شبکه و میزان انتشارگاز دی‌اکسید­کربن در فرآیندهای حمل و نقل، تولید، بازیافت و انهدام  پیشنهاد  شده  است. علاوه ­بر  این، در طراحی هر شبکه، هزینه های عملیاتی تأثیر بسزایی در هزینۀ کل زنجیرة تأمین دارد. بر این مبنا، در این تحقیق سعی شده است با اضافه نمودن مباحث نمودار یادگیری در دو بخش تولید و بازیافت، زمان‌ و هزینه‌های ساخت و بازیافت محصول را کاهش داده و اثر استفاده از این نمودار را بر‌روی کاهش هزینه‌های زنجیرة­ تأمین مورد مطالعه قرار دهد. برای حل مدل دو هدفه و نشان دادن موازنه بین اهداف از روش محدودیت اپسیلون1 استفاده شده است. کاربردی بودن مدل با حل یک مثال عددی و تحلیل حساسیت نشان داده می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Development of a Mathematical Model for Facility Location in Green Closed-Loop Supply Chain with Learning Effect

نویسندگان [English]

  • S. Jamshidi 1
  • Omid boyerhassani 2
1 Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 Assistant Professor,Industrial Engineering, Faculty of Engineering, Islamic Azad University, Najaf Abad, Iran
چکیده [English]

Environment has become an important global issue in the current century. Hence in the recent years, green closed loop supply chain management has increasingly grown as a result of government regulation and consumer expectations. In this study, an effort has made to formulate a facility location model for a multi-period green closed loop supply chain network consisting of suppliers, manufacturers, distributers, customers and also recycling and disposal centers. A bi-objective mixed-integer linear programming model has proposed to design the supply chain network with minimization of total costs and carbon dioxide emission objectives in transportation, production, recycling and disposing processes. In addition in a supply chain, operation cost has major effect on the total cost. So, in this research has tried to consider learning curve (LC) effect on reducing time and cost of the production and recycling in the manufacturing and recycling centers. Then, the effect of using LC on the supply chain cost has investigated. The ε-constraint method has utilized to solve the bi-objective model and illustrating trade-off between objectives. The applicability of the model has demonstrated by a numerical example and sensitivity analysis.

کلیدواژه‌ها [English]

  • Green supply chain
  • Closed-loop supply chain
  • mathematical model
  • Facility location
  • Learning curve
-Ashfari, H., Sharifi, M., Elmekaway, T-Y., Peng, Q., (2014), “Facility Location decisions within integrated forward/reserve logestics under on certainty”. Procedia CIRP, (17), pp.606–610.

 

-Amin, S. H., & Zhang, G., (2013), “A multiobjective facility location model for closed-loop supply chain network under uncertain demand and return”. Applied Mathematical Modelling, 37(6), pp.4165-4176.

 

-Bazan, E., Jaber, M. Y., & Zanoni, S. (2017). Carbon emissions and energy effects on a two-level manufacturer-retailer closed-loop supply chain model with remanufacturing subject to different coordination mechanisms. International Journal of Production Economics, 183, pp.394-408.

 

-Chen, Y.T., Chang, D.S., (2010), “Diffusion effect and learning effect: an examination on MSW recycling”. Journal of Cleaner Production, (18) 5, pp.496-503.

 

-El-Sayed, M., Afia, N., & El-Kharbotly, A., (2010), “A stochastic model for forward–reverse logistics network design under risk. Computers & Industrial Engineering, (58)3, pp.423-431.

 

-Ernesto, D.R, Santibanez-Gonzalez, Diabat, A. (2015), “Modeling logistics service providers in a non-cooperative supply chain”. Applied Mathematical Modelling, (40)13-14, pp.6340-6358.

 

-Fareeduddin, M., Hassan, A., Syed, M. N., & Selim, S. Z. (2015), “The impact of carbon policies on closed-loop supply chain network design. Procedia CIRP, 26, pp.335-340.

 

-Jaber, M. Y., & Guiffrida, A. L., (2008). Learning curves for imperfect production processes with reworks and process restoration interruptions. European journal of operational research, 189(1), pp.93-104.

 

-Jaber, M.Y., Bonny, M., & Guiffrida, A. L., (2010), “Coordinating a three-level supply chain with learning-based continuous improvement. International journal of production economics, (127)1, pp.27-38.

-Lee, A. H., Kang, H. Y., Hsu, C. F., & Hung, H. C., (2009). A green supplier selection model for high-tech industry. Expert systems with applications, 36(4), pp.7917-7927.

 

-Fleischmann, M., Beullens, P., BLOEMHOF‐RUWAARD, J. M., & Van Wassenhove, L. N. (2001). The impact of product recovery on logistics network design. Production and operations management, 10(2), pp.156-173.

 

-Niknegad, A. Petrovic, D., (2014). Optimisation of integrated reverse logistics networks with different product recovery routes. European Journal of Operational Research, (238)1, pp.143-154.

 

-Salema, M. I. G., Barbosa-Povoa, A. P., & Novais, A. Q., (2007), “An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty”. European Journal of Operational Research, 179(3), pp.1063-1077.

 

-Sarrafha, k., Rahmati, S.h., Akhavan Niaki, S.T., & Zaretalab, A., (2015), “A bi-objective integrated procurement, production, and distribution Problem of a multi-echelon supply chain network design: A new tuned MOEA, Computers & Operations Research”, (54), pp.35–51.

 

-Tsuchiya, H., & Kobayashi, O., (2004). Mass production cost of PEM fuel cell by learning curve. International Journal of Hydrogen Energy, 29(10), pp.985-990.

-Talaei, M., Moghaddam, B. F., Pishvaee, M. S., Bozorgi-Amiri, A., & Gholamnejad, S. (2016). A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry. Journal of Cleaner Production, 113, pp.662-673.

-Tsao, Y. C., & Sheen, G. J. (2012). Effects of promotion cost sharing policy with the sales learning curve on supply chain coordination. Computers & Operations Research, 39(8), pp.1872-1878.

 

-Wright, T. P., (1936), “Factors affecting the cost of airplanes. Journal of aeronautical sciences, 3(4), pp.122-128.

 

-Xu, K., Chiang, W. Y. K., & Liang, L., (2011), “Dynamic pricing and channel efficiency in the presence of the cost learning effect. International Transactions in Operational Research, 18(5), pp.579-604.

       

- Zhao, R., Liu, Y., Zhang, N., & Huang, T. (2017). An optimization model for green supply chain management by using a big data analytic approach. Journal of Cleaner Production, 142, pp.1085-1097.

 

-Zohal, M., Soleimani, H., (2016), “Developing an Ant colony Approach for green-loop supply chain network design: A case study in gold industry”. Journal of cleaner production, (133), pp.314–337.