ارایه مدل پیش بینی شدت تصادفات وسایل نقلیه با استفاده از داده‌های تصادفات (مطالعه موردی محور بابل-گنج افروز)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، دانشگاه علم و فناوری مازندران، بهشهر، ایران

2 مربی، گروه مهندسی عمران، واحد ملارد، دانشگاه آزاد اسلامی، ملارد، تهران، ایران

3 دانش آموخته کارشناسی ارشد، موسسه آموزش عالی علوم و فناوری آریان، امیرکلا، مازندران، ایران

4 استادیار، گروه مهندسی عمران، واحد ملارد، دانشگاه آزاد اسلامی، ملارد، تهران، ایران

چکیده

استان مازندران با توجه به طبیعت زیبای خود همواره یکی از استان های توریستی و گردشگری می باشد که همه ساله تعداد زیادی از افراد در فصول مختلف سال به این استان سفر می­کنند. همچنین این استان یکی از قطب های کشاورزی کشور می­باشد که سهم زیادی از حمل و نقل این صنعت، از طریق حمل و نقل جاده ای انجام می­گیرد که باعث ایجاد تردد ترافیکی با حجم بالا و در پی آن باعث ایجاد حوادث ترافیکی می­گردد. آمار ارایه شده در سال های اخیر نشان می­دهد که این استان، هفتمین استان از نظر تلفات ناشی از تصادفات در کشور می باشد. بر این اساس تحقیقات زیادی در مورد شناسایی عوامل موثر بر شدت تصادفات صورت گرفته است و پیشرفت­های زیادی هم در این مورد حاصل شده است، ولی مطالعات انجام شده در مورد رابطه بین شدت تصادفات و نوع برخورد ناچیز بوده، لذا انجام تحقیقات بیشتر در این مورد ضروری به نظر می­رسد. در این پژوهش با بکارگیری مدل چند جمله­ای لوجیت از مجموعه مدل­های انتخاب برای ارایه مدل پیش بینی شدت تصادفات بهره گرفته شده است. همچنین با استفاده از مدل پیش بینی دو تایی از مجموعه الگوریتم­های داده کاوی شامل الگوریتم CART به عنوان یکی از الگوریتم های درخت تصمیم و الگوریتمANN- MLP از مجموعه الگوریتم­های شبکه های عصبی مصنوعی استفاده گردید و نتایج مورد نیاز استخراج و با یکدیگر مقایسه شده­اند. براساس مطالعه ها صورت گرفته شده در این پژوهش نشان داده شده است که بهترین مدل از نظر درصد درست پیش بینی و قابلیت  ارائه فرمول پیش بینی برای هر سطح،  مدلMNL  بوده است.نتایج بدست آمده در بخش مدلهای پیش بینی نشان می دهد فرمول برآورد شده قادر به پیش بینی شدت تصادفات در سطوح0 (صفر) و 1 با دقت کافی می باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Presenting Model of Intensity Estimation of Vehicle Accidents Using Accident Data (Case Study: Babol-Ganj Afrooz Road)

نویسندگان [English]

  • R. Babagoli 1
  • A. Ameli 2
  • A.A. Gholamrezatabar 3
  • A. Paydar 4
1 Department of Civil Engineering, Malard Branch, Islamic Azad University, Malard, Tehran, Iran.
2 Department of Civil Engineering, Malard Branch, Islamic Azad University, Malard, Tehran, Iran.
3 M.Sc., Grad., Aryan Institute of Science and Technology, Amirkola, Mazandaran, Iran
4 Department of Civil Engineering, Malard Branch, Islamic Azad University, Malard, Tehran, Iran.
چکیده [English]

Due to its beautiful nature, province of Mazandaran which is always one of the tourist and tourist provinces, where many people travel to the province every year in different seasons. The province is also one of the country's agricultural hubs, which contribute a lot to the transportation of this industry through road transport, which creates high traffic volume traffic and, as a result, traffic accidents. The statistics provided in recent years show that this province is the seventh province for casualties caused by accidents in the country. Based on this, a lot of research has been carried out on the identification of factors affecting the severity of accidents and there have been many advances in this regard, but studies on the relationship between the severity of accidents and the type of collision have been negligible, so further research in this It seems necessary. In this research, using a model of logistic polynomials from a set of selection models for predicting the intensity of accidents has been used. Also, using a prediction model of two sets of data mining algorithms including CART algorithm as one of decision tree algorithms and ANN-MLP algorithm, an array of artificial neural network algorithms was used and the required results were extracted and with each other have been compared. According to the studies carried out in this study, it has been shown that the best model was the MNL model in terms of the correct prediction and the ability to present the prediction formula for each level. The results obtained in the forecasting section show that the estimated formula is able to predict the severity of accidents at 0 (zero) and 1 levels with sufficient accuracy.

کلیدواژه‌ها [English]

  • Severity of crashes
  • vehicles
  • Prediction Model
  • logit
  • Neural Network
-اداره ایمنی و ترافیک سازمان راهداری و حمل و نقل
جاده­های کشور، (1384)، "گزارش آماری و تحلیل تصادفات جاده­ای"، انتشارات اداره راه تهران، تهران.

 

-اسماعیلی، م.، (1393) "داده‌کاوی (مفاهیم و تکنیک ها)"، (چاپ دوم)، تهران، نیاز دانش، پژوهشکده حمل ونقل وزارت راه و شهرسازی، (۱۳۸۹).

 

-راضی اردکانی، ح.، صمیمی، الف.، (1390)، "بررسی عوامل موثر بر شدت تصادفات درون شهری با استفاده از مدل های پروبیت، لوجیت و شبکه عصبی مصنوعی"، یازدهمین کنفرانس بین المللی حمل ونقل و مهندسی ترافیک، تهرانَ، ایران.

 

-نصیری، ح ا.، ادریسی، ع.، (1382)، " مدل سازی و شناسایی عوامل موثر در شدت تصادفات کامیون­ها در جاده­های دو خطه برون شهری با استفاده از مدل لوجیت و شبکه عصبی"، ششمین کنفرانس بین المللی مهندسی عمران.

 

-نصیری، ح. ا. طلوعی، ر.، (1380)، "شناسایی عوامل موثر در شدت تصادفات جلو به جلو با استفاده از مدل پروبیت ترتیبی، اولین کنفرانی بین المللی حوادث رانندگی و جاده­ای.

 

-نصیری، ح. ا.، ع. ادریسی.، (۱۳۸۲)، "­مدل­سازی  و شناسایی عوامل موثر در شدت تصادفات کامیون­ها در جاده­های دو خطه برون شهری با استفاده از مدل لوجیت و شبکه عصبی"، ششمین کنفرانس بین المللی مهندسی عمران.

 

-نصیریان، م.، (۱۳۸۹)، "اولویت­بندی ایمن سازی تقاطعات شهری بر اساس مدل رگرسیون لگاریتم طبیعی"­، دهمین کنفرانس بین المللی حمل و نقل و مهندسی ترافیک تهران، ایران.

 

-Barua, U., Tay., (2010), "Severity of Urban Transit Bus Crashes in Bangladesh". Journal of Advanced transportation, Vol. 44(I), pp. 34-41.

 

-Behnood, Ali, L. Mannering, Fred, (2015), "The temporal stability of factors affecting driver-injury severities in single- vehicle crashes: Some empirical evidence", Analytic Methods in Accident Research, 8, pp. 7-32.

 

-Celik, Ali Kemal, Oktay, Erkan, (2014), "A multinornail logit analysis of fisk factors influencing road trafficinjury severities in thr Erzurum and Kars Provinces of Turkey", Accident Analysis and Prevention, 72,
pp.66-77.

 

-Haleem, k., Abdel-aty, m., (2010), “Examining traffic crash injury severity at signalized intersections”, journal of safety research, 41(4), pp. 347-357.

 

-Haleem, Kirolos, Gan, Albert, (2013), "Effect of Driver's Age and Side of Impact on Crash Severity along Urban Freeways: A Mixed Logit Approach", Journal of safety Research, JSR-01087, pp. 10-11.

 

- Haque, M. M., Chin, H. C., & Huang, H. (2009). Modeling fault among motorcyclists involved in crashes. Accident Analysis & Prevention, 41(2), 327-335.

 

-Jones, A. P., Jorgensen, S. H., (2013), “The use of multilevel models for the prediction of road accident outcomes, accident analysis and prevention, 35(1), pp. 59-69.

 

-Kaplan, S., C. G. Prato. (2012), "Risk Factors Associated with Bus Accident Severity in the United States: A Generalized Ordered Logit Model". Journal of Safety Research, Vol. 43(3), pp. 171-180.

 

-Khattak, A. J., Kantor. P. and Council, F. M. (1999), "Role of adverse weather in key crash type on limited: Access roadways implications for advanced weather systems". Transportation Research Record, Issue 1621, pp.15-19.

 

-Kononen, d.w., Flannagan , c.a.c, Wang, s. c., (2011), identification and validation of a logistic regression model for predicting  serious injuries associated with motor vehicle crashes, accident analysis and prevention, 43(1), pp.112-122.

 

 

-Kropko, J., (2007), “Choosing between multinomial logit and multinomial probit models for analysis of unordered choice data (Doctoral dissertation, The University of North Carolina at Chapel Hill)”.

 

 

-Moore, D. N., Schneider IV, W. H., Savolainen, P. T., & Farzaneh, M., (2011), “Mixed logit analysis of bicyclist injury severity resulting from motor vehicle crashes at intersection and non-intersection locations”. Accident Analysis & Prevention, 43(3), pp.621-630.

 

 

-Persuad, B. and Dzbik, L., (1993), "Accident perdition models for freeways", transportation research record, 1401, pp. 55-60.

 

-Voget, A and Bared , J., (1999), "Accident models tor two lane rural segments and intersection". transportation Research Record, Issue 1635, pp. 18-29.

 

 

-WHO (World Health Organization), (2004), “Global status report on road safety (time for action)”. World Health Organization. Published in Geneva, Switzerland.

 

 

World Health Organization, (2013), “Global status report on road safety (time for action)”. World Health Organization. Published in Geneva, Switzerland.

 

-Wu, Qiong, Chen, Feng , Zhang, Guohui, Cathy Liu, Xiaoyue, Wang, Hua, M. Bogus, Susan, (2014), "Mixed logit model-based driver injury severity investigations in single and multi-vehicle crashes on rural two- land highways", Accident Analysis and Prevention, 72, pp. 105-115.

 

-Yasmin, Shamsunnahar, Eluru, Naveen, R. Pinjari, Abdul, Tay, Richard, (2014), "Examining driver injury severity in two vehicle crashes-A copula based all roach", Accident Analysis and Prevention, 66,
pp. 120-135.

 

-Zeng, Qiang, Huang, Helai, (2014), "A stable and optimized neural network model for crash injury severity prediction", Accident Analysis and Prevention, 73, pp. 351-358.

 

-Zuxuan, d., Ivan­, j.n., garder. P., (2006),
“in analysis of factors affecting the severity of head on crashes two-lane rural highways in Connecticut”­, pp. 137-146.