امکان‌پذیری ساخت روسازی‌های بتن بلوکی کاملاً نفوذپذیر در شرایط اقلیمی ایران با توجه به روش ICPI

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانش آموخته کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

3 دانشجوی دکتری، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

روسازی­های بتن بلوکی تراوا به­عنوان یکی از انواع روسازی­های نفوذپذیر، در جهت نیل به اهداف مدیریت رواناب­های شهری مورد استفاده قرار می­گیرند. تجربه به­کارگیری آنها در کشورهای مختلف نشان داده است که آگاهی دقیق از شرایط بارشی و هیدرولوژیکی و نیز ویژگی­های ژئوتکنیکی محل ساخت پروژه، از اصلی­ترین نیازهای طراحی موفق این گونه روسازی­ها محسوب می­گردد. علی­رغم این مسئله، بررسی­ها نشان داده است که اطلاعات جامعی در این خصوص برای کشور ایران در دسترس نمی­باشد. در پژوهش حاضر با استفاده از اطلاعات موجود و بهره­گیری از نرم افزار PDP، به بررسی مناطق مختلف ایران برای ساخت این روسازی­ها پرداخته شده و مناطقی که از پتانسیل بیشتری برای انجام مطالعات زیر ساختی برخوردار هستند، اولویت­بندی شده­اند. نتایج حاکی از آن است که مناطق واقع شده در نواحی گرم و خشک ایران از قدرت رقابت­پذیری بیشتری برای سرمایه­گذاری بر روی روسازی­های بتن بلوکی کاملاً تراوا برخوردار هستند. هم­چنین مشاهده شد که تحت شرایط مورد بررسی در این مطالعه، بار هیدرولیکی تأثیرگذاری بیشتری نسبت به بار ترافیکی در ضخامت نهایی روسازی­های بتن بلوکی تراوا دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Construction Possibility of Permeable Concrete Block Pavements in Iran Climatic Conditions according to the ICPI Method

نویسندگان [English]

  • saeed farzin 1
  • Reza Behzadian 2
  • F. Sayyah 3
2 Grad. M.Sc., Faculty of Civil Engineering, Semnan University, Semnan, Iran
3 Ph.D., Student, Faculty of Civil Engineering, Semnan University, Semnan, Iran.
چکیده [English]

Permeable concrete block pavements have been used as a kind of mainstream type of pavements in order to achieve the purposes of urban runoff management. Their application in different countries has shown that the exact awareness of hydrological and geotechnical characteristics of project site are considered as basic requirements for successful designing these pavements. Despite this, studies have shown that comprehensive information is not available for this issue about Iran. In this research, different regions of Iran for construction of these pavements have been studied by using available information and taking advantage of ICPI method. The regions with greater potential for infrastructure research have been prioritized. Results indicate that regions located in hot and dry areas of Iran have greater competitiveness for investment on permeable concrete block pavements. Furthermore, it’s found that by considered assumptions, hydraulic restrictions are more crucial than traffic loads in the process of designing this kind of pavements.

کلیدواژه‌ها [English]

  • concrete block pavement
  • permeable pavement
  • Permeability
  • PDP Software
  • Iran climate
-کتابچی، م. و تجریشی، م.، (1393)، "اصول طراحی روسازی نفوذپذیر در حذف آلاینده از رواناب سطحی"، هشتمین کنگره ملی مهندسی عمران، بابل، دانشگاه صنعتی نوشیروانی.

-کمالی، م. و تجریشی, م.، (1390)، "بکارگیری روسازی نفوذپذیر در مدیریت رواناب شهری"، کنفرانس ملی توسعه پایدار و عمران شهری، اصفهان، موسسه آموزش عالی دانش پژوهان.

-“AASHTO Guide for Design of Pavement Structures”, (1993), Washington, D.C.: American Association of State Highway and Transportation Officials.

-Al-Rubaei, A. M., Viklander, M., & Blecken, G. T., (2015), “Long-term hydraulic performance of stormwater infiltration systems”, Urban Water Journal, 12(8), pp.660-671.

-Applied Research Associates, Inc. (ARA), (2012), “SF permeable paving stone systems (1st ed.)”, Toronto, Ontario: Applied Research Associates, Inc.(ARA), Retrieved from https://www.basalite.com.

-Bentarzi, Y., Ghenaim, A., Terfous, A., Wanko, A., Feugeas, F., Poulet, J. B., & Mosé, R., (2015), “Hydrodynamic behaviour of a new permeable pavement material under high rainfall conditions”, Urban Water Journal, pp.1-10.

-Borst, M., & Brown, R. A. (2014), “Chloride released from three permeable pavement surfaces after winter salt application”. JAWRA Journal of the American Water Resources Association, 50(1), pp.29-41.

-Brown, R. A., & Borst, M., (2013), “Assessment of clogging dynamics in permeable pavement systems with time domain reflectometers”. Journal of Environmental Engineering, 139(10), pp.1255-1265.

-Brown, R. A., & Borst, M., (2014a), “Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches”, Journal of Hydrologic Engineering, 20(2), 04014041.

-Brown, R. A., & Borst, M. (2014b), “Evaluation of surface infiltration testing procedures in permeable pavement systems”, Journal of Environmental Engineering, 140(3), 04014001.

-Brown, R. A., & Borst, M. (2015a). Nutrient infiltrate concentrations from three permeable pavement types. Journal of environmental management, 164, 74-85.

-Brown, R. A., & Borst, M., (2015b), “Quantifying evaporation in a permeable pavement system”, Hydrological Processes, 29(9), pp.2100-2111.

-BS 7533-13:2009 “pavements constructed with clay, natural stone or concrete pavers - part 13: Guide for the design of permeable pavements constructed with concrete paving blocks and flags, natural stone slabs and setts and clay pavers”. BSI, Lon-don, March.

-Cipolla, S. S., Maglionico, M., & Stojkov, I., (2015), “Experimental Infiltration Tests on Existing Permeable Pavement Surfaces”. CLEAN–Soil, Air, Water.

-Claytor, R.A., and Schueler T. R., (1996), “Design of Stormwater Filtering Systems”, Center for Watershed Protection, Silver Spring, Maryland.

-Cui, L., & Bhattacharya, S., (2015)., “Choice of aggregates for permeable pavements based on laboratory tests and DEM simulations”, International Journal of Pavement Engineering, pp.1-9.

-Dierkes, C., & Lucke, T., (2015), “Development and approval of an innovative permeable pavement with high design demands”, In Proceedings of the 36th International Association for Hydro-Environment Engineering and Research World Congress. International Association for Hydro-Environment Engineering and Research.

-Drake, J., Bradford, A., & Van Seters, T., (2014), “Stormwater quality of spring–summer-fall effluent from three partial-infiltration permeable pavement systems and conventional asphalt pavement”. Journal of environmental management, 139, pp.69-79.

-Eisenberg, B., Lindow, K. C., & Smith, D. R. (Eds.), (2015), “Permeable Pavements, American Society of Civil Engineers.

-Fan, L. F., Wang, S. F., Chen, C. P., Hsieh, H. L., Chen, J. W., Chen, T. H., & Chao, W. L. (2013), “Microbial community structure and activity under various pervious pavements, Journal of Environmental Engineering, 140(3), 04013012.

-Ferguson, B. K., (2005), “Porous pavements, CRC Press.

-Ghasemi, A., Mirzaei, S., Mirzaei, Y., Raoof, M., & Moradnezhadi, M., (2014), “Effect of Climate on Temporal Distribution Pattern of Rainfall and Comparing With Each other and Known Patterns Case Study: Ardebil Province–Iran”. Bull, Env, Pharmacol, Life Sci, 3(4), pp.162-169.

-Gilan, H. M., Ahmadi, H., Jaafari, M., Bihamta, M., & Salajegheh, A., (2010), “Study of the Temporal Distribution Pattern of Rainfall Effect on Runoff and Sediment Generation Using Rain Simulator (Case Study: Alvand Basin)”. World Applied Sciences Journal, 11(1), pp.64-69.

-Hassani, A., Mohammad, S., & Ghoddusi, P., (2010) , “Runoff infiltration through permeable block pavements”. In Proceedings of the Institution of Civil Engineers-Transport, Vol. 163, No. 4,
pp. 183-190, Thomas Telford Ltd.

-Hein, D. K., Eng, P., Swan, D. J., & Schaus, L., (2010), “Structural and hydrological design of permeable pavements”. In 2010 annual conference of the transportation association of Canada, Halifax, Canada.

-Hsu, C. Y., Chen, S. H., Lin, J. D., & Su, Y. M. (2015), “The In-Situ Temperature Evaluations of Permeable Pavements in Summer”, Journal of marine science and technology-taiwan, 23(3), pp.288-292.

-Huang, J., He, J., Valeo, C., & Chu, A., (2016), Temporal evolution modeling of hydraulic and water quality performance of permeable pavements, Journal of Hydrology, 533, pp.15-27.

-ICPI Tech Spec No. 4, (2014), “Structural Design of Interlocking Concrete Pavement for Roads and Parking Lots”, (2014) Chantilly, Retrieved from https://www.icpi.org.

-Interpave British Precast Concrete Federation Ltd., (2010), “Permeable pavements: guide to design construction and maintenance of concrete block permeable pavements (6th ed.), Leicester. Retrieved from http: www.paving.org.uk.

-Kayhanian, M., Weiss, P. T., Gulliver, J. S., & Khazanovich, L., (2015), “The Application of Permeable Pavement with Emphasis on Successful Design, Water Quality Benefits, and Identification of Knowledge and Data Gaps: A summary report from the National Center for Sustainable Transportation”.

-knapton, j., & mcbride, C., (2009), “Permeable Pavements for Heavily Trafficked Roads–A Full Scale Trial”. In Proc, 9 th International Conference on Concrete Block Paving, Buenos Aires.

-Knapton, J., Morrell, D., & Simeunovich, M. “Structural Design Solutions for Permeable Pavements”, Landscape, 44(1422), 312000.

-Kumar, K., Kozak, J., Hundal, L., Cox, A., Zhang, H., & Granato, T., (2016), “In-situ infiltration performance of different permeable pavements in a employee used parking lot–A four-year study”, Journal of environmental management, 167, pp.8-14.

-Lariyah, M. S., Mohamed Roseli, Z. A., Zulkefli, M., & Amirah Hanim, M. P. (2014). Application of porous pavement system for MSMA stormwater management ecoHydrology: comparison of asphalt, interlocking and turf pavement. In 13th International Conference on Urban Drainage.

-Leipard, A. R., Kevern, J. T., & Richardson, J. R., (2015), “Hydraulic Characterization and Design of Permeable Interlocking Concrete Pavement”, In World Environmental and Water Resources Congress 2015 pp. 292-301.

-Li, H., Jones, D., Wu, R., & Harvey, J. T., (2014), Development and HVS Validation of Design Tables for Permeable Interlocking Concrete Pavement: Final Report.

-Li, H., Kayhanian, M., & Harvey, J. T., (2013), “Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods”. Journal of environmental management, 118, pp.144-152.

-Li, H., Wu, R., Jones, D., Harvey, J., & Smith, D. R., (2015), “Structural Performance of Permeable Interlocking Concrete Pavement under Heavy Traffic Loading”, New Frontiers, pp.172-173.

-Lin, J. D., Hsu, C. Y., Citraningrum, A., & Adhitana, P., (2013a), “The Impact of Different Types of Permeable Pavement Utilization on Air Temperature above the Pavement”, In Advanced Materials Research Vol. 723, pp. 678-685.

-Lin, J. D., Hsu, C. Y., Paramitha, P. A., & Lee, J. C. (2013b), “The Study of Pavement Surface Temperature Behavior of Different Permeable Pavement Materials during Summer Time”, In Advanced Materials Research, Vol. 723, pp. 711-718.

-Lucke, T., (2014), “Using drainage slots in permeable paving blocks to delay the effects of clogging: Proof of concept study”. Water, 6(9), pp.2660-2670.

-Lucke, T., Boogaard, F., & van de Ven, F., (2014), “Evaluation of a new experimental test procedure to more accurately determine the surface infiltration rate of permeable pavement systems”. Urban, Planning and Transport Research, 2(1), pp.22-35.

-Lucke, T., White, R., Nichols, P., & Borgwardt, S. (2015), “A Simple Field Test to Evaluate the Maintenance Requirements of Permeable Interlocking Concrete Pavements”. Water, 7(6), pp.2542-2554.

-Modarres, R., & Sarhadi, A., (2011),
“Statistically-based regionalization of rainfall climates of Iran. Global and Planetary Change, 75(1), pp.67-75.

-Mullaney, J., & Lucke, T., (2014), “Practical review of pervious pavement designs”, Clean–Soil, Air, Water, 42(2), pp.111-124.

-Murphy, L. U., Cochrane, T. A., & O’Sullivan, A. (2015), “The Influence of Different Pavement Surfaces on Atmospheric Copper, Lead, Zinc, and Suspended Solids Attenuation and Wash-Off”. Water, Air, & Soil Pollution, 226(8), pp.1-14.

-Palla, A., Gnecco, I., Carbone, M., Garofalo, G., Lanza, L. G., & Piro, P., (2015), “Influence of stratigraphy and slope on the drainage capacity of permeable pavements: laboratory results”. Urban Water Journal, 12(5), pp.394-403.

-Park, D. G., Sandoval, N., Lin, W., Kim, H., & Cho, Y. H. (2014), “A case study: Evaluation of water storage capacity in permeable block pavement. KSCE Journal of Civil Engineering, 18(2), pp.514-520.

-Permeable Paving Design Guide, (2013), “Retrieved from http://www.marshalls.co.uk /watermanagement.

-Pratt, C.J., Mantle, J.D.G., and Schofield, P.A., (1995), “UK research into the performance of permeable pavement, reservoir structures in controlling stormwater discharge quantity and quality”. Water Science and Technology, 32 (1), pp.63–69.

-Radfar, A., & Rockaway, T. D., (2015), “Neural Network Models for Captured Runoff Prediction of Permeable Interlocking Concrete Pavements. In World Environmental and Water Resources Congress 2015, pp. 349-358.

-Rahman, M. A., Imteaz, M. A., Arulrajah, A., Disfani, M. M., & Horpibulsuk, S., (2015a), “Engineering and environmental assessment of recycled construction and demolition materials used with geotextile for permeable pavements”. Journal of Environmental Engineering, 141(9), 04015019.

-Rahman, M. A., Imteaz, M. A., Arulrajah, A., Piratheepan, J., & Disfani, M. M., (2015b), “Recycled construction and demolition materials in permeable pavement systems: geotechnical and hydraulic characteristics”. Journal of Cleaner Production, 90, pp.183-194.

-Rodriguez-Hernandez, J., Andrés-Valeri, V. C., Ascorbe-Salcedo, A., & Castro-Fresno, D., (2015), “Laboratory Study on the Stormwater Retention and Runoff Attenuation Capacity of Four Permeable Pavements”. Journal of Environmental Engineering, 04015068.

-Sañudo Fontaneda, L. Á., Charlesworth, S. M., Castro Fresno, D., Andrés Valeri, V. C. A., & Rodríguez Hernández, J., (2014), “Water quality and quantity assessment of pervious pavements performance in experimental car park areas”.

-USDA SCS, U., (1986), “Urban hydrology for small watersheds”, United States Department of Agriculture (US Soil Conservation Service), Technical Release, 55, pp.13.

-Shackel, B., (2006), “Design of Permeable Paving Subject to Traffic”, In International Conference On Concrete Block Paving.

Smith, D. R., (2006), “Permeable Interlocking Concrete Pavements: Selection, Design, Construction, Maintenance”, Interlocking Concrete Pavement Institute.

-Smith, D. R., & Hein, D. K., (2013), “Development of a National ASCE Standard for Permeable Interlocking Concrete Pavement”. In Second Conference on Green Streets, Highways, and Development.

-Smith, D. R., & Hunt, W. F., (2010), “structural/hydrologic design and maintenance of permeable interlocking concrete pavement, asce Publications.

-Stochl, M. R. (2015), “Hydraulic Design of Permeable Interlocking Concrete Pavement—Design Tool Development. In World Environmental and Water Resources Congress, pp. 302-311.

-Structural Design of Interlocking Concrete Pavement for Municipal Streets and Roadways ASCE/T&DI/ICPI standard­; 58-10, (2010), Reston, Virginia: American Society of Civil Engineers.

-Wardynski, B. J., Winston, R. J., & Hunt, W. F., (2012), “Internal water storage enhances exfiltration and thermal load reduction from permeable pavement in the North Carolina mountains, Journal of Environmental Engineering, 139(2), pp.187-195.

-WB Nichols, P., Lucke, T., & Dierkes, C., (2014), “Comparing two methods of determining infiltration rates of permeable interlocking concrete pavers. Water, 6(8), pp.2353-2366.

-Weiss, P. T., Kayhanian, M., Khazanovich, L., & Gulliver, J. S., (2015), “Permeable Pavements in Cold Climates: State of the Art and Cold Climate Case Studies”.

-Winston, R. J., Al-Rubaei, A. M., Blecken, G. T., Viklander, M., & Hunt, W. F., (2016), “Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate–The effects of street sweeping, vacuum cleaning, high pressure washing, and milling”. Journal of environmental management, 169, pp.132-144.

Yazdi, M. N., Ketabchy, M., & Nia, M. Y. (2015), “Clogging Evaluation and Pollutants Removal from Surface Runoff by Permeable Pavement System: Insights from the Laboratory Rainfall Simulator”. Jurnal UMP Social Sciences and Technology Management Vol, 3(1).