تاثیر الیاف ضایعاتی فرش ماشینی فرسوده بر خصوصیات مکانیکی و جذب انرژی بتن خود تراکم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه مهندسی عمران، دانشگاه آزاد واحد خمین، خمین، ایران

2 استادیار، گروه مهندسی عمران، دانشگاه هرمزگان

چکیده

این تحقیق تاثیر الیاف ضایعاتی فرش ماشینی فرسوده بر خصوصیات بتن تازه و سخت شده بتن خود تراکم می‌پردازد. الیاف فرش ضایعاتی در درصدهای 0، 5/0، 0/1 و % 5/1 حجم بتن برای بررسی به بتن خود تراکم اضافه شدند. آزمایش‌های بتن خود متراکم تازه شامل آزمایش‌های جریان اسلامپ، حلقه جی، قیف وی، جعبه‌ ال-شکل بودند. برای نمونه‌های سخت شده الیاف در دو حالت عمل آوری نرمال و رطوبت نسبی %30 بررسی شدند و آزمایش‌های مقاومت فشاری و مقاومت خمشی در سن 28 روزه روی آن‌ها انجام شد. از نمودار بار- جابجایی بر اساس داده‌های آزمایش خمشی برای محاسبه اندیکس چقرمگی خمشی استفاده شد. نتایج حاصل از این پژوهش نشان می‌دهد که با افزودن الیاف ضایعاتی صنعت فرش به بتن شاهد کاهش خصوصیات کارایی بتن تازه هستیم هرچند این کاهش کارایی برای الیاف تا %1 هنوز در محدوده آیین‌نامه‌ای قرار دارد. مقاومت فشاری از 0 تا % 5/1 کاهش قابل ملاحظه‌ای (از 36 به MPa 19) می‌یابد. پس از ترک خوردگی اولیه در جابجایی‌ای بزرگی نظیر mm2 می‌توان انتظار داشت که میزان بار برای همه نمونه‌های حاوی الیاف از kN 5/5 بالاتر باشد. تاثیر عمده الیاف در اندیکس چقرمگی خمشی خود را نشان می‌دهد بطوریکه از 0 تا % 5/0 الیاف اندیکس بیش از %90 افزایش می‌یابد اما بعد از این درصد تغییر عمده‌ای نمی‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of industrial carpet waste fibers on the mechanical and toughness properties of self-compacting concrete

نویسندگان [English]

  • Navid Ghasemi 1
  • Arash Byat 1
  • Hamed Rooholamini 2
1 M.Sc., Grad., Civil Engineering Department, Azad University, Khomein Branch, Khomein, Iran.
2 Civil engineering department University of Hormozgan.
چکیده [English]

This research was aimed to evaluate the effect of the recycled waste carpet fiber on the mechanical properties of self-compacting concrete (SCC). Waste carpet fibers in 0, 0.5, 1.0 and 1.5% of volumes fraction of SCC were added. SCC samples have two different curing procedure; normal curing and curing at relative humidity of 30 %. For fresh stage, slump flow test, j-ring, V funnel and L box were done and for hardened stage, compressive and flexural tests were performed at the age of 28 days. The load–deflection curves were extracted from flexural test data to calculate the flexural toughness. Results show that by increasing fiber from 0 to 1.5%, the workability of SCC and compressive strength significantly decreases. However, reduction in workability for fibers up to 1% is still in the acceptable limits of EFNARC. From 0 to 1.5% waste fiber in flexural test, significant increases in energy absorption and toughness index were observed. The major increase in toughness index were observed from 0 to 0.5 % and after that does not change considerably.

کلیدواژه‌ها [English]

  • Industrial Waste Carpet Fiber
  • Self-Compacting Concrete
  • Index of Flexural Toughness
-Ahmed, H. U., Faraj, R. H., Hilal, N., Mohammed, A. A., & Sherwani, A. F. H. (2021), “Use of recycled fibers in concrete composites: A systematic comprehensive review”, Composites Part B: Engineering, 108769.
-ASTM C1611, (2018), “Standard test method for slump flow of self-consolidating concrete, ASTM International”, West Conshohocken, PA.
-­ASTM C1621, (2017), “Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring, ASTM International, West Conshohocken, PA.
-ASTM C293,  (2016), “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading)”, ASTM International, West Conshohocken, PA, pp. 19428-2959.
-Awal, A. A., & Mohammadhosseini, H., (2016), “Green concrete production incorporating waste carpet fiber and palm oil fuel ash”, Journal of Cleaner Production, 137, pp.157-166.
-­EFNARC, (2005), “The European guidelines for self-compacting concrete, Specification, Production and Use”.
-­Cunningham, P. R., Green, P. G., & Miller, S. A., (2021), “Utilization of post-consumer carpet calcium carbonate (PC4) from carpet recycling as a mineral resource in concrete”, Resources, Conservation and Recycling, 169, pp.105496.
-­Choobbasti, A. J., Samakoosh, M. A., & Kutanaei, S. S., (2019), “Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers”, Construction and Building Materials, 211, pp.1094-1104.
-­De Gutiérrez, R. M., Diaz, L. N., & Delvasto, S., (2005), “Effect of pozzolans on the performance of fiber-reinforced mortars”, Cement and Concrete Composites, 27(5), pp.593-598.
-­BS EN 12350-10, (2010), “Testing fresh concrete, Self-compacting concrete, L box test, British Standard Int.
- Fashandi, H., Pakravan, H. R., & Latifi, M., (2019), “Application of modified carpet waste cuttings for production of eco-efficient lightweight concrete”, Construction and Building Materials, 198, pp.629-637.
-­EN 12350-9, Testing self-compacting concrete: V-Funnel test, British Standard Int.
- Karahan, O., & Atiş, C. D., (2011), “The durability properties of polypropylene fiber reinforced fly ash concrete, Materials & Design, 32(2), pp.1044-1049.
-Mo, K. H., Alengaram, U. J., Jumaat, M. Z., & Liu, M. Y. J., (2015), “Contribution of acrylic fibre addition and ground granulated blast furnace slag on the properties of lightweight concrete”, Construction and Building Materials, 95, pp.686-695.
-­Mohammad Hosseini, H., Alyousef, R., Lim, N. H. A. S., Tahir, M. M., Alabduljabbar, H., & Mohamed, A. M., (2020), “Creep and drying shrinkage performance of concrete composite comprising waste polypropylene carpet fibres and palm oil fuel ash”, Journal of Building Engineering, 30, 101250.
-Mohammadhosseini, H., & Awal, A. S. M. A., (2014), "Physical and mechanical properties of concrete containing fibers from industrial carpet waste, Doctoral dissertation, Universiti Teknologi Malaysia.
-­Ramezanianpour, A. A., Esmaeili, M., Ghahari, S. A., & Najafi, M. H., (2013), "Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers", Construction and Building Materials, 44, pp.411-418.
- Pereira-de-Oliveira, L. A., Castro-Gomes, J. P., & Nepomuceno, M. C., (2012), "Effect of acrylic fibres geometry on physical, mechanical and durability properties of cement mortars", Construction and Building Materials, 27(1), pp.189-196.
-Mohammad hosseini, H., & Yatim, J. M., (2017), "Evaluation of the effective mechanical properties of concrete composites using industrial waste carpet fiber", INAE Letters, 2(1), pp.1-12.
-­Mastali, M., Dalvand, A., & Sattarifard, A. R., (2016), "The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers", Journal of Cleaner Production, 124, pp.312-324.
-­Packard, R. G., (1984), “Thickness design for concrete highway and street pavements”.
-­Silva, E. R., Coelho, J. F. J., & Bordado, J. C., (2013), “Strength improvement of mortar composites reinforced with newly hybrid-blended fibres”, Influence of fibres geometry and morphology, Construction and Building Materials, 40, pp.473-480.
-­Schmidt, H., & Cieślak, M., (2008), “Concrete with carpet recyclates: Suitability assessment by surface energy evaluation”, Waste Management, 28(7), pp.1182-1187.
-­Wang, Y., Zureick, A. H., Cho, B. S., & Scott, D. E., (1994), “Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste”, Journal of materials science, 29(16), pp.4191-4199.
-Wang, Y., (1999), “Utilization of recycled carpet waste fibers for reinforcement of concrete and soil”, Polymer-Plastics Technology and Engineering, 38(3),
pp.533-546.
-­Zarei, A., Rooholamini, H., & Ozbakkaloglu, T., (2021), “Evaluating the Properties of Concrete Pavements Containing Crumb Rubber and Recycled Steel Fibers Using Response Surface Methodology”, International Journal of Pavement Research and Technology, pp.1-15.