ارزیابی رفتار سرعت رانندگان در جاده‌های دو طرفه کوهستانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی عمران‌، دانشگاه یزد، یزد، ایران

2 دانشیار، دانشکده مهندسی عمران‌، دانشگاه یزد، یزد، ایران

چکیده

چکیده

در کشور‌های در حال توسعه خطر وقوع تصادفات در جاده‌های کوهستانی به علّت طرح هندسی پیچیده بیش از جاده‌های معمولی است. بنابراین سازگاری طرح هندسی با انتظارات رانندگان نقش مهمی در کاهش تصادفات در این مناطق خواهد داشت. در این پژوهش دو راه کوهستانی دو خطه دو طرفه از استان‌های یزد و کرمان به عنوان مطالعه موردی انتخاب شد و سازگاری طرح در آن‌ها با استفاده از داده‌های سرعت بدست آمده از گوشی‌های هوشمند رانندگان مورد ارزیابی قرار گرفت. برای این منظور مفهوم جدیدی تحت عنوان المان بحرانی معرفی شد. المان بحرانی در واقع المانی از مسیر است که نرخ انحناء آن نسبت به المان‌های مجاور آن بیشتر ‌است. هر المان از مسیر مجموعه‌‌‌ای ‌از قوس‌ها با نرخ انحنا تقریبا مشابه و مسیر‌های مستقیم کوتاه مابین آن‌ها است. میزان کارایی این مفهوم با دو روش مختلف مورد ارزیابی قرار گرفت. روش اوّل به کارگیری آزمون‌های فرض آماری و روش دوم بررسی ضریب همبستگی اسپیرمن بین تصادفات تعیین شده به روش بیزین و یک شاخص رایج سنجش سازگاری بود. ارزیابی آزمون‌های آماری نشان داد که فرض صفر برای کلیه المان‌های بحرانی تعریف شده در این دو مسیر رد شد و فرضیه کاهش سرعت در مجاورت المان بحرانی مورد تایید قرار گرفت. در نهایت بر اساس مفهوم ارائه شده و پروفیل سرعت عملکردی، مواردی جهت ارتقاء سازگاری طرح در جاده کوهستانی شرح داده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Drivers’ Speed Behavior on Mountainous Rural Highways

نویسندگان [English]

  • Mohammadhossein Rezaeifar 1
  • Hamed Khani Sanij 2
1 Ph.D., Student, Department of Civil Engineering, Yazd University, Yazd, Iran.
2 Associate Professor, Department of Civil Engineering, Yazd University, Yazd, Iran
چکیده [English]

In developing countries, the crash risk on mountainous rural highways is higher than on non-mountainous rural highways due to their complex geometric design. Thus, the consistency of geometric characteristics with drivers’ behavior plays a remarkable role in reducing crashes in these areas. In this study, two substandard mountainous rural highways of Iran were selected to measure local design consistency based on continuous speed data collected by smartphone technology. The idea of employing critical elements was introduced to evaluate local design consistency. The critical element is an individual element with a higher CCR (curvature change rate) value compared to the CCR values of their adjacent elements. An individual element was defined as a curve or a group of curves with similar CCR values, and short tangents between each two curves. The efficiency of this concept was evaluated base on statistical hypothesis test and determining spearman rank coefficient between a popular design consistency indictor and expected rural highway crashes. The null hypothesis was rejected for all of the critical elements and it was confirmed that drivers reduce their speed when they face the critical element. Finally, several concepts related to design consistency on mountainous rural highways were elaborated according to operating speed profiles.

کلیدواژه‌ها [English]

  • Critical Element
  • Mountainous Rural Highways
  • Design Consistency
  • Speed
.AASHTO, (2018), “A Policy on Geometric Design of Highways and Streets”, 7th Edition, www.transportation.org.
-Ahmadinejad, M., Afandizadeh Zargari, S., & Jalalkamali, R., (2018), “Are deceleration numbers a suitable index for road safety? Proceedings of the Institution of Civil Engineers: Transport”, 171(5), pp.247–252. Doi.org/10.1680/jtran.16.00117.
-Anderson, I. B., Bauer, K. M., Harwood, D. W., & Fitzpatrick, K., (1999), “Relationship to safety of geometric design consistency measures for rural two-lane highways”, Transportation Research Record, 1658(1), pp.43–51.
-Arche, L. G., & Nord, P., (2003), “Road Safety manual”, World Road Association PIARC.
-Bella, F., Calvi, A., & D’Amico, F., (2014), “Analysis of driver speeds under night driving conditions using a driving simulator”, Journal of Safety Research, 49, 45.e1-52. Doi.org/10.1016/j.jsr.2014.02.007
-Boonsiripant, S., Rodgers, M. O., & Hunter, M. P., (2011), “Speed profile variation as a road network screening tool”, Transportation Research Record, 2236(1), pp.83–91.
-Cafiso, S., D’Agostino, C., & Persaud, B., (2018), “Investigating the influence of segmentation in estimating safety performance functions for roadway sections”, Journal of Traffic and Transportation Engineering (English Edition), 5(2), pp.129–136. Doi.org/10.1016/j.jtte.2017.10.001.
-Cafiso, S., & la Cava, G., (2009), “Driving performance, alignment consistency, and road safety. Transportation Research Record, 2102, pp.1–8. Doi.org/10.3141/2102-01.
-Cafiso, S., Montella, A., D’Agostino, C., Mauriello, F., & Galante, F., (2021), “Crash modification functions for pavement surface condition and geometric design indicators”, Accident Analysis and Prevention, 149. Doi.org/10.1016/j.aap.2020.105887.
-Colonna, P., Intini, P., Berloco, N., & Ranieri, V., (2018), “Integrated American-European protocol for safety interventions on existing two-lane rural roads”, European Transport Research Review, 10(1).
Doi.org/10.1007/s12544-017-0274-4.
-Dhahir, B., & Hassan, Y., (2019), “Using horizontal curve speed reduction extracted from the naturalistic driving study to predict curve collision frequency”, Accident Analysis and Prevention, 123, pp.190–199.
Doi.org/10.1016/j.aap.2018.11.020.
-Eboli, L., Guido, G., Mazzulla, G., & Pungillo, G., (2017), “Experimental relationships between operating speeds of successive road design elements in two-lane rural highways. Transport, 32(2), 138–145. Doi.org/10.3846/16484142.2015.1110831.
-Elvik, R., (2019), “The more (sharp) curves, the lower the risk, Accident Analysis & Prevention, 133, 105322.
Doi.org/10.1016/j.aap.2019.105322.
-Fitzpatrick, K., Wooldridge, M. D., Tsimhoni, O., Collins, J., Green, P., Bauer, K., Parma, K., Koppa, R., Harwood, D., Anderson, I., Krammes, R., & Poggioli, B., (2000), “Alternative design consistency rating methods for two-lane rural highways”, Fhwa-Rd-99-172, 99, 162.
-Habib, K., Shalkamy, A., & El-Basyouny, K., (2019), “Investigating the effects of mental workload on highway safety”, Transportation Research Record, 2673(7), pp.619–629.
-Haghani, M., Jalalkamali, R., & Haghani, H., (2021), “Calibration of Highway Safety Manual’s Crash Prediction Model for Rural Two-Lane Two-Way Roads in a Developing Country: A Case Study”, Computational Research Progress in Applied Science & Engineering (CRPASE), 7(1).
-Hamilton, I., Himes, S., Porter, R. J., & Donnell, E., (2019), “Safety Evaluation of Horizontal Alignment Design Consistency on Rural Two-Lane Highways”, Transportation Research Record, 2673(2), pp.628–636. Doi.org/10.1177/0361198119829414.
-Highway Safety Manual, (2010), “American Association of State Highway and Transportation Officials, Vol. 19192.
-Lamm, R., Beck, A., Ruscher, T., Mailänder, T., Cafiso, S., & LACAVA, G., (2006), “How to make two-lane rural roads safer-scientific background and guide for practical application”.
-Lamm, R., Choueri, E. M., & Hayward, J. C., (1988), “Tangent as an independent design element”, (Issue 1195).
-Lamm, R., Psarianos, B., & Mailaender, T., (1999), “Highway design and traffic safety engineering handbook”.
-Llopis-Castelló, D., Bella, F., Camacho-Torregrosa, F. J., & García, A., (2018), “New Consistency Model Based on Inertial Operating Speed Profiles for Road Safety Evaluation”, Journal of Transportation Engineering, Part A: Systems, 144(4), 04018006. Doi.org/10.1061/jtepbs.0000126.
-Llopis-Castelló, D., Findley, D. J., & García, A., (2021), “Comparison of the highway safety manual predictive method with safety performance functions based on geometric design consistency”, Journal of Transportation Safety and Security, 13(12), pp.1365–1386. Doi.org/10.1080/19439962.2020.1738612.
-Montella, A., Pariota, L., Galante, F., Imbriani, L. L., & Mauriello, F., (2014), “Prediction of Drivers’ Speed Behavior on Rural Motorways Based on an Instrumented Vehicle Study”, Transportation Research Record: Journal of the Transportation Research Board, 2434(1), pp.52–62.
Doi.org/10.3141/2434-07.
-Ng, J. C. W., & Sayed, T., (2004), “Effect of geometric design consistency on road safety”, Canadian Journal of Civil Engineering, 31(2), pp.218–227. Doi.org/10.1139/l03-090.
-Rusli, R. bin, Haque, M. D., King, M., & Wong, S. V., (2015), “A comparison of road traffic crashes along mountainous and non-mountainous roads in Sabah, Malaysia”, Proceedings of the 2015 Australasian Road Safety Conference (ARSC2015), pp.1–12.
-Rusli, R., Haque, M. M., King, M., & Voon, W. S., (2017), “Single-vehicle crashes along rural mountainous highways in Malaysia: An application of random parameters negative binomial model”, Accident Analysis and Prevention, 102, pp.153–164.
Doi.org/10.1016/j.aap.2017.03.002.
-Vaiana, R., Iuele, T., Gallelli, V., & Rogano, D., (2018), “Demanded versus assumed friction along horizontal curves: An on-the-road experimental investigation”, Journal of Transportation Safety & Security, 10(4), pp.318–344.
-Washington, S., Karlaftis, M., Mannering, F., & Anastasopoulos, P., (2020), “Statistical and Econometric Methods for Transportation Data Analysis”, https://www.crcpress.com/go/ids.
-Wolf, J., Bachman, W., Oliveira, M., Auld, J., Mohammadian, A. K., Vovsha, P., & Zmud, J., (2014), Applying GPS data to understand travel behavior, Vol. II: guidelines.
-World Health Organization, (2018), Global status report on road safety.
-Zhao, X., Carling, K., & Håkansson, J., (2017), “An evaluation of the reliability of GPS-based transportation data”, IAC (International Academic Conference on Transport, Logistics, Tourism and Sport Science) in Vienna November 24-25,
pp.323–334.
-Zolali, M., Mirbaha, B., Layegh, M., & Behnood, H. R., (2021), “A Behavioral Model of Drivers’ Mean Speed Influenced by Weather Conditions, Road Geometry, and Driver Characteristics Using a Driving Simulator Study”, Advances in Civil Engineering, 2021, pp.1–18.
Doi.org/10.1155/2021/5542905.