بررسی آزمایشگاهی اثر مشترک مقدار ریزدانه، سیمان، و مقاومت فشاری طرح اختلاط بهینه بتن غلتکی روسازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد‌، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

3 استاد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

استفاده از بتن غلتکی مطلوب برای روسازی راه زمانی دارای اهمیت بیشتری است که علاوه بر کم کردن هزینه­های اقتصادی، نیاز به طرح اختلاطی بهینه با مقاومت بالا باشد لذا باید پارامترهایی همچون جنس مصالح سنگی، نوع دانه­بندی، نوع و میزان سیمان مصرفی و سایر مشخصات مواد تشکیل دهنده بتن مورد بررسی قرار گیرد که در این پژوهش با تغییر در مقدار ریزدانه و سیمان، سعی بر رسیدن به طرح اختلاطی بهینه شده است که به ترتیب مقدار ریزدانه از کل مصالح سنگی در دو محدوده 100 تا 50% و 0 تا 50%  تغییر و مقدار نسبت سیمان به مصالح خشک در محدوده­ی 10 تا %22 تغییر کرده است. نتایج حاصل از آزمایش مقاومت فشاری نشان داد که طرح اختلاطی با 34% ریزدانه و 66% درشت­دانه دارای دانه­بندی و سیمان بهینه است که به ترتیب باعث افزایش 12.5 و 15.04% مقاومت فشاری نسبت به حالت مبنا شده است. افزایش مقدار سیمان تا حدودی باعث افزایش مقاومت شده ولی افزایش بیش از حد بهینه باعث کاهش مقاومت فشاری شد.ضمنا نتایج نشان داد که با افزایش میزان ریزدانه تا مقدار 50%، عملیات تراکم  بتن غلتکی به حالت مبنا (یعنی 50% درشت دانه و 50% ریزدانه) نزدیک­تر شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Investigation of Common Effectiveness of Fine Aggregate, Cement, and Compressive Strength of Optimum Mix Design of Pavement Rolled Compacted Concrete

نویسندگان [English]

  • Mahdi Navvabi 1
  • Mohammad Kazem Sharbatdar 2
  • Gholamali Shafabakhsh 3
1 M.Sc., Grad., Faculty of Civil Engineering‌, Semnan University, Semnan, Iran.
2 Faculty of Civil Engineering‌, Semnan University, Semnan, Iran.
3 Faculty of Civil Engineering‌‌, Semnan University, Semnan, Iran.
چکیده [English]

The need for a suitable Roller Compacted Concrete Pavement (RCCP) has effective role in the use of this concrete in the pavement. In order to achieve the desired Roller Compacted Concrete, an optimal mixing plan is required to have optimal mixing parameters such as kind of stone materials, type of aggregate, type and amount cement consumption; and other properties of its ingredients can play a significant role. In this paper, by changing the RCC’s gradation in 8 different types, inside and outside the specified range of regulations, and 5 different percentages of cements, compressive strength of the cylindrical samples were tested and calculated to determine the optimal amount of cement and optimum granulation. The results of this experiment showed that the mixing plan with 34% fine grained and 66% coarse presented the best and optimal compressive strength. The concrete compressive strength of Rolled Compacted Concrete was increased by increasing the cement up to limited amount­.

کلیدواژه‌ها [English]

  • Roller Concrete Compacted Pavement
  • Optimum Gradation
  • Cement
  • Compressive Strength
- باقری، ع.ر.، محمودیان، م.، فخری، م.، (1385)­، "تاثیر عمل آوری  بر خواص بتن غلتکی   روسازی راه  با و بدون دوده سیلیس"،  پژوهشنامه حمل و نقل، شماره3، ص. 147 تا 162.
 
- -عاملی­، ع.ر.، پرورش­کاران، ا.، هاشمی­،س.ا.ح.­، (1397)­، "­تاثیر استفاده از مصالح بازیافتی در خصوصیات مکانیکی بتن غلتکی"، پژوهشنامه حمل و نقل، شماره55، ص. 271 تا 296.
-         -عاملی­، ع.ر. پرورش­کاران، ا.، هاشمی­، س.ا.ح. (1397)،
" بررسی عملکرد و مشخصات مکانیکی مخلوط بتن غلتکی
( (RCCحاوی مقادیر بالای خاکستر بادی، خرده لاستیک بازیافتی و نانوسیلیس با استفاده از بهینه سازی سطح پاسخ"، پژوهشنامه حمل و نقل، شماره56، ص. 381 تا 395.
 
- American Concrete Institute, (2011), “207.5R-11. Roller-compacted mass concrete,” .
- American Concrete Institute, (2015), “327R-14, Guide to Roller-Compacted Concrete Pavements,”.
 -American Concrete Institute, (2011), “ACI 325.10R-95 (Reapproved 2001), Report on Roller-Compacted Concrete Pavements”.
-American Concrete Institute, (2000), “ACI 309.5R-00. Compaction of Roller-Compacted Concrete,” .
 -American Society for Testing and Materials, (2013), “D5821-13. Standard Test Method for determining the percentage of fractured particles in coarse aggregate,”.
 -American Society for Testing and Materials, (2015), “C128-15. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate,”.
 -American Society for Testing and Materials, (2015), “C127-15. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate,”.
 -American Society for Testing and Materials, (2010), “D2216-10. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass,”.
 -American Society for Testing and Materials, (2015), “C131/C131M-14. Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine,”.
 -American Society for Testing and Materials, (2016), “C535-16. Standard Test Method for Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine,”.
 -American Association of State Highway and Transportation Officials, (2011), “AASTHO T 27 / T 11 (17). Sieve Analysis of Fine and Coarse Aggregates,”.
 -American Society for Testing and Materials, (2011), “C702/C702M -11. Standard Practice for Reducing Samples of Aggregate to Testing Size,”.
 -American Concrete Institute, (2002), “211.3R-02. Guide for Selecting Proportions for No-Slump Concrete,”. American Society for Testing and Materials, “C1557-12. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using,”.
 -American Society for Testing and Materials, (2013), “C1176/C1176M-13. Standard Practice for Making Roller-Compacted Concrete in Cylinder Molds Using a Vibrating Table,”­.
 -American Society for Testing and Materials, (2016), “C39/C39M-16b. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,”.
 -Ashraf, W. B.  and Noor, M. A., (2011), “Performance-evaluation of concrete properties for different combined aggregate gradation approaches,” Procedia Engineering, Vol. 14,
pp. 2627–2634.
 -Cook, M.D., Seader, J.N., Ley, M.T., (2015), “Investigation of optimized graded concrete for oklahoma-phase 2,” Final report, Oklahoma Department of Transportation, pp. 156.
 -Chen, H.-J. and Wu, C.-H., (2018), “Influence of Aggregate Gradation on the Engineering Properties of Lightweight Aggregate Concrete,” Applied Sciences, Vol. 8, No. 8, pp. 1324.
 
- Domone, P.,Illston, J., (2011), “Construction Materials” , Spon Press, pp. 114-119.
 
- Ekwulo, E. O. and Eme, D. B., (2017), “Effect of Aggregate Gradation on Compressive Strength and Elastic Modulus of Cement Treated Aggregate Base Material for Highway Pavement,” International organization of Scientific Research, Vol. 07, No. 10, pp. 79–89.
 -Federal Highway Administration, (2016), “FHWA-HIF-16-003. Roller-Compacted Concrete Pavement,” .
 -Harrington, D., Abdo, F.,  Adaska, W. and Hazaree, C., (2011), "Guide for Roller-Compacted Concrete Pavements", No.1.
 -Kim, D.H. and Won, M. C., (2006), “Pilot Implementation of Optimized Aggregate Gradation for Concrete Paving” .
- Kumar, D. S., Narasimhul, P. A. K., Kumar, M. P., and Pradesh, A., (2018), “Optimization of Aggregate Gradation and its Effects on Properties of Normal Strength Concrete (­M20),
”­International Journal for Scientific Research & Development, Vol. 6, No. 02, pp. 3041–3048.
- LaHucik, J., Roesler, J., and Pavements, H., (2015), “Low Fines Content Roller-Compacted Concrete,” Airfield and Highway Pavements 2015, Vol. 4, pp. 441–452.
- Nmai, C. K., (1999), “ACI Education Bulletin E1-99,”.
- Ulas, M. A.,  Alyamac, K. E.  and Ulucan, Z. C., (2017), “Effects of aggregate grading on the properties of steel fibre-reinforced concrete,” IOP Conference Series: Materials Science and Engineering, Vol. 246, No. 1.
-Vinay, M. L. G. G., Prasad, K.S., (2016), “Effect of Gradation of Coarse Aggregate on Strength Properties of Geopolymer Concrete,” International Journal of Innovative Research in Science, Engineering and Technology,
pp. 14879–14886.
 
-VO, O. and EE, A., (2016), “Effects of Aggregate Gradation on the Properties of Concrete Made From Granite Chippings,” Journal of Steel Structures & Construction,
Vol. 2, No. 1, pp. 2–4.
 
-Zhao, H.,  Sun, W., Wu, X., and Gao, B., (2012), “The effect of coarse aggregate gradation on the properties of self-compacting concrete,” Materials and Design, Vol. 40,
pp. 109–116.