بررسی ساختار نوسان پذیری شاخص‌های نرخ کرایه حمل در بازار کشتی‌های فله‌بر خشک و تانکر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مربی، دانشکده اقتصاد و مدیریت دریا، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران

2 استادیار، دانشکده اقتصاد و مدیریت دریا، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران

چکیده

در ادبیات مالی، نوسان پذیری قیمت یا هر متغیر را شاخصی از ریسک آن متغیر دانسته و معمولا آنرا با استفاده از انحراف معیار یا واریانس محاسبه می­کنند. بر همین اساس، هدف از انجام این مقاله بررسی ساختار نوسانات شاخصهای نرخ کرایه کشتی های فله بر خشک و تانکر است. به منظور تحلیل ساختار نوسانات کرایه حمل از شاخص هایBCTI ، BDTIوBDI ، و نیز، یک الگوی کامل واریانس ناهمسانی مشروط خود همبستگی استفاده شد. نتایج حاصل از تحقیق نشان داد که نوسانات فراوانی در هر سه بازار نرخ کرایه حمل وجود داشته است. همچنین نتایج دوام پایننتر حافظه یک شوک در شاخص BDIرا نشان میدهد که در دوران نوسان قیمتها، ریسک این بازار بسیار کمتر از ریسک کرایه حمل دو بازار دیگر خواهد بود. بر این اساس و با توجه به نظر مارکوییتز، سرمایه گذارانی که قصد خرید سهام شرکتهای حمل کننده فله خشک و یا نفت را دارند، در صورتی که قصد نگهداری بلندمدت سهام داشته و به صورت استراتژیک در بازار سهام فعالیت می کنند، خرید سهام شرکتهای حمل کننده فله خشک ریسک کمتری را برای آنها به دنبال خواهد داشت.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Structure of Freight Rate Indices Volatility in Dry Bulk and Tanker Shipping Markets

نویسندگان [English]

  • M. Abbaspour 1
  • M. A. Kohbor 2
  • H. Yousefi 2
1 Instructor, Maritime Economics and Management Department, Khoramshahr University of Marine Science & Technology, Iran
2 Assistant professor, Maritime Economics and Management Department, Khoramshahr University of Marine Science & Technology, Iran
چکیده [English]

In financial literature, price volatility or any variable is an indicator of the risk of that variable, and it is usually calculated using standard deviation or variance. Accordingly, the purpose of this paper is to analyze the structure of volatility of freight rate in the dry bulk and tanker markets. In order to, examine the structure of the volatility of BDI, BCTI and BDTI indices; full autoregressive conditional heteroscedasticity was used. The results of the research showed that there was high volatility in all three freight markets. Also, the results of the Minimum durability of the memory of a shock in the BDI index indicate that during the volatility of prices, the freight risk of this market will much less than the other two markets. So, and according to Markowitz theory, investors who intend to buy dry bulk or oil tankers shipping companies stocks, if they intend to maintain stocks in long-term and work strategically in the stock market, buying stocks of dry bulk shipping companies will be less risky for them.
 
 

کلیدواژه‌ها [English]

  • Transportation
  • freight
  • Shipment

- سیاره، ج.، حسنلی، م.ع.، و نورامین، الف.س.، (1390)، "پیش بینی بازار کرایه حمل فله خشک در سالهای 2011 و "2012، مجله علوم و فنون دریایی، دوره 10، شماره 2، ص. 79 – 90.

 

- علائی نژاد، غ.ر.، و نبوی چاشمی، س.ع.، (1393)، "پیش بینی بازار کرایه حمل دریایی کالای فله خشک برای سالهای 2014 و 2015"، همایش بین المللی مدیریت­.

 

-کارگزاری بورس آثل، (1394)، "بررسی تحلیلی صنعت حمل و نقل دریایی و فعالیت مرتبط با آن، واحد تحلیل و سبد گردانی"، ص. 13- 14.

 

- نوفرستی، م.، (1395)، "ریشه واحد و همجمعی در آمار و  اقتصادسنجی"، نشر رسا.

 

-Amir, H. A., (2013), "Trading volume and volatility in the shipping forward freight market, Transportation Research Part E: Logistics and Transportation Review 49(1): pp.250-265.

 

-Chen, S., (2011), “Modeling and Forecasting in the dry bulk shipping market”, ISBN: 9789085704218.

 

Greene, W. H. (2000), “Econometric analysis,6th ed, MIT Press, pp. 720-742.

 

-Lu, J., Marlow, P. B., Wang, H., (2008), “An analysis of freight rate volatility in dry bulk shipping markets”, Maritime Policy & Management 35(3): pp.237-251.

 

-Nelson, D. B. (1991), “Conditional heteroscedasticity in asset returns: A new approach”, Econometric

59, pp.347-370.

 

-Pourkermani, K., (2012), “Essays on the econometric modeling and forecasting of shipping market variables, Ph.D. Thesis, Newcastle University.

 

-Shuangrui, F., Tingyun, J., Wilmsmeier, G., Bergqvist R., (2013), “Forecasting Baltic Dirty Tanker Index by Applying Wavelet Neural Networks”, Journal of Transportation Technologies, 3: pp.68-87.

 

-S. Sødal, S. Koekebakkera and R. Adland, (2008), “Market switching in Shipping-A Real Option Model Applied to the Valuation of Combination Carriers,” Review of Financial Economics, Vol. 17, No. 3,
pp. 183-203. 

 

-Xu, J.J., Yip, T.L., Marlow, P. B., (2011), “the dynamics between freight volatility and fleet size growth in dry bulk shipping markets, Transportation Research Part E: Logistics and Transportation Review 47 (6): pp.983-991.

 

-UNCTAD (2016), "Review of Maritime Transport", United Nations Publications, New York & Geneva.