اثرسنجی روش تخصیص ترافیک بر دقت نتایج تصحیح ماتریس مبدا- مقصد در روش جریان فازی ترافیک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران

2 دانشکده مهندسی عمران و محیط‌زیست، دانشگاه تربیت مدرس

چکیده

از روش­های ارزان در تهیه ماتریس مبدا- مقصد برای سال پایه، تصحیح ماتریس مبدا- مقصدهای قدیمی بر اساس مقادیر مشاهده شده در برخی از کمان­ها است. در هر یک از این روش­ها به منظور بدست آوردن سهم حجم هر یک از کمان­ها از تقاضای بین مبدا- مقصدهای موجود، ماتریس اولیه (و در تکرارهای بعدی، ماتریس اصلاح شده) به شبکه تخصیص داده می­ شود. از روش­های نوین تصحیح ماتریس مبدا- مقصد، با وارد شدن مفهوم فازی، روش جریان فازی تصحیح شده است. این روش نیز همانند سایر روش­ها در فرآیند تصحیح ماتریس، از تخصیص ماتریس بهره می­گیرد. با توجه به اهمیت روش تخصیص استفاده شده در اصلاح ماتریس، این مقاله به اثرسنجی روش تخصیص ترافیک در روش تصحیح جریان فازی ترافیک می­پردازد. نتایج نشان می­دهد که استفاده از روش تعادل کاربر، نسبت به روش احتمالی و جزئی برتری داشته و مقدار ضریب خوبی برازش در روش تعادل کاربر برابر مقدار 82/0 است و این در حالی است که در روش احتمالی این شاخص برابر 72/0 و در روش جزئی دارای مقدار 67/0 است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the Effect of Traffic Assignment Method on the Accuracy of the Origin-Destination Matrix Correction Results in Traffic Fuzzy Flow Method

نویسندگان [English]

  • Alireza Mahpour 1
  • A. R. Mamdoohi 2
1 Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University,
2 Associate Professor‌, Department of Civil and Environmental Engineering, Tarbiat Modares University
چکیده [English]

Correction old OD matrix is one of the Cheapest methods for provide the Origin-destination matrix for the base year, which are based on the observed values in selected links. In each of these methods, in order to obtain the share of each links from the demand between the ODs, the primary matrix (and in subsequent replicates, the modified matrix) is assigned to the network. By introduction of fuzzy concept, new methods for correcting the OD matrix have been refined, which called the fuzzy flow method (TFF). This method uses the matrix assignment as well as other methods in the matrix correction process. Considering the importance of the assignment method used in matrix correction, this paper deals with the effect of traffic assignment method in traffic fuzzy flow correction method. The results show that the use of the user equilibrium method is superior to the stochastic and incremental assignment, and the good fit coefficient in the user equilibrium method is equal to 0.82, while in the stochastic method, this R2 is 0.72 and in the incremental assignment has a value
of 0. 67.

کلیدواژه‌ها [English]

  • OD Matrix Correction
  • traffic assignment
  • Traffic Fuzzy Flow Method (TFF)
  • Mashhad
Ashok K., (1996), “Estimation and Prediction of Time-Dependent Origin-Destination Flows”.
Ph.­D. thesis, Transportation Systems, Massachusetts Institute of Technology, Cambridge, MA, USA.

 

-Bell M., (1991), “The estimation of origin-destination matrices by constrained generalized least squares”. Journal of Transportation Research Part B: Methodological 25(1): pp.13–22.

 

-Bera S and Rao KV., (2011), “Estimation of origin-destination matrix from traffic counts: the state of the art”. Journal of European Transport 49: pp.3–23.

 

-Cascetta E., (1984), “Estimation of trip matrices from traffic counts and survey data: a generalized least squares estimator”. Journal of Transportation Research Part B: Methodological 18(4–5): pp. 289–299.

                                          Cascetta E and Postorino MN., (2001),­“Fixed point approaches to the estimation of O/D matrices using traffic counts on congested networks”. Journal of Transportation Science 35(2): pp.134–147.

 

-Fisk CS., (1988), “On combining maximum entropy trip matrix estimation with user optimal assignment”. Journal of Transportation Research Part B: Methodological 22(1): pp.69–73.

 

Friedrich M, Nokel K and Mott P., (2000), “Keeping passenger surveys up-to-date; A fuzzy approach”. Transportation Research Record 1735: pp.35–42.

 Hyndman RJ and Koehler AB., (2006), “Another look at measures of forecast accuracy”. International Journal of Forecasting 22(4): pp.679–688. 

 

Joshi C, Darwent C and Giese K., (2009), “Transportation modeling for the 2010 winter Olympic Games”. Proceedings of the 2009 Annual Conference of the Transportation Association of Canada, Vancouver, British Columbia, Canada, pp. 1–20.

 

-Kim H, Beak S and Lim Y., (2001) Origin-destination matrices estimated with a genetic algorithm from link traffic counts. Transportation Research Record 1771: pp.156–163. 

 

-Lundgren JT and Peterson A., (2008), “A heuristic for the bi level origin-destination matrix estimation problem”. Journal of Transportation Research Part B: Methodological 42(4): pp.339–354. 

 

-Maher MJ., (1983), “Inferences on trip matrices from observations on link volumes: a Bayesian statistical approach”. Journal of Transportation Research Part B: Methodological 17(6): pp.435–447. 

 

-Mussone L. and Mattuecci M., (2013), “OD matrices network estimation from link counts by neural networks. Journal of Transportation Systems Engineering and Information Technology 13(4): pp.84–93.

 

-Perrakis K., Karlis D., Cools M. et al., (2012), “A Bayesian approach for modeling origin-destination matrices”. Journal of Transportation Research Part A: Policy and practice 46(1): pp.200–212. 

 

-Reddy KH and Chakroborty P., (1998), “A fuzzy inference based assignment algorithm to estimate O-D matrix from link volume counts”. Journal of Computers, Environment and Urban Systems 22(5): pp.409–423. 

 

-Ren, J. and Rahman, A., (2009), “Automatically balancing intersection volumes in a highway network”.12th TRB Transportation planning application conference.

 

-Shafahi Y. and Faturechi R., (2009), “A practical OD matrix estimation model based on Fuzzy set theory for large cities. Proceedings of the 23rd European Conference on Modeling and Simulation”, Madrid, Spain, pp.­77–83.

 

-Spiess H., (1987), “A maximum-likelihood model for estimating origin-destination matrices. Journal of Transportation Research Part B: Methodological 21(5): 395–412. 

 

-Teodorovic D., (1999), “Fuzzy logic systems for transportation engineering: the state of the art”. Journal of Transportation Research Part A: Policy and Practice 33(5): pp.337–364. 

 

-Van Zuylen JH., (1978), “The information minimizing method: validity and applicability to transport planning”. In New Developments in Modeling Travel Demand and Urban Systems (Jansen GRH, Bovy PHL, vanEst JPJM and le Clerq F (eds)). Saxon, Farnborough, UK.

 

VanZuylen JH and Willumsen LG., (1980), 
“The most likely trip matrix estimated from traffic counts. Journal of Transportation Research Part B: Methodological 14(3): pp.281–293. 

 

-Vortisch P. and Mohl P., (2003), “Traffic state estimation in the traffic management center of Berlin”. Proceedings of the 82nd Annual Meeting of the Transportation Research Board, Washington, DC, USA.

 

-Willumsen LG., (1981), “Simplified transport models based on traffic counts”. Journal of Transportation 10: pp.257–278. 

 

-Wong KL and Yu S., (2011), “Estimation of origin-destination matrices for mass event: a case study of Macau Grand Prix”. Journal of King Saud University-Science23(3): pp.281–292.

 

Xie C, Kockelman KM and Waller ST., (2010), “A maximum entropy method for origin-destination trip matrix estimation. Transportation Research Record 2196: pp.111–119. 

 

-Xu, W. and Chan, Y., (1993), “Estimating an origin-destination matrix with fuzzy weights”. Part 1: Methodology, Transportation Planning and Technology17, pp.127-144.

 

 

 

 

 

 

 

 

-Yang, H., (1995), “Heuristic algorithms for the bi-level origin-destination matrix estimation problem”. Journal of Transportation Research Part B: Methodological 29(4): pp.231–242. 

 

Yang H, Meng Q. and Bell MGH., (2001), “Simultaneous estimation of the origin-destination matrices and travel-cost coefficient for congested networks in stochastic user equilibrium. Journal of Transportation Science 35(2): pp.107–123. 

 

-Yang H, Sasaki T. and Iida Y., (1994), “The equilibrium-based origin-destination matrix estimation problem”. Journal of Transportation Research Part B: Methodological 28(1): pp.23–33.

 

-Yang H, Sasaki T., Iida Y. and Asakura Y., 
(1992), “Estimation of origin-destination matrices from link traffic counts on congested networks”. Journal of Transportation Research Part B: Methodological 26(6): pp.417–433. 

 

-Yousefikia, M., (2012), “Estimation of Origin-Destination Matrix from Link Volume Counts Using TF low Fuzzy Method: Implemented for Mashad City. MSc thesis, Transportation Planning and Engineering, Tarbiat Modares University, Tehran, Iran.

 

-Yousefikia, M., Mamdoohi, A. R. and Noruzoliaee, M. H., (2016), “A Iterative update of route choice proportions in OD estimation, Journal of the proceedings of the institution of civil engineering
(ICE)-Transport, 169 (1), pp.53-60.

 

-Yousefikia M., Mamdoohi A. R., Moridpour S., Noruzoliaee M. H. and Mahpour A. R., (2013), “A study on the generalized T Flow Fuzzy O-D estimation”, Australasian Transport Research Forum 2013 Proceedings, Brisbane, Australia.